Difference between revisions of "raspiext"

From GCtronic wiki
Jump to: navigation, search
(System)
Line 15: Line 15:
 
* zram
 
* zram
 
* SSH
 
* SSH
 +
 +
=Robot configuration=
 +
The e-puck2 robot must be programmed with the following firmware [http://projects.gctronic.com/epuck2/gumstix/e-puck2_main-processor_gumstix_c35e8da_06.11.18.elf  e-puck2_main-processor_gumstix.elf] and the selector must be placed in position 10.<br/>
 +
This is needed in order to exchange data with the robot through I2C.
  
 
=ROS=
 
=ROS=
Line 35: Line 39:
 
* open the configuration file named <code>single_epuck_driver_rviz.rviz</code> you can find in <code>epuck_driver_cpp/config/</code> directory
 
* open the configuration file named <code>single_epuck_driver_rviz.rviz</code> you can find in <code>epuck_driver_cpp/config/</code> directory
  
The e-puck2 robot must be programmed with the following firmware [http://projects.gctronic.com/epuck2/gumstix/e-puck2_main-processor_gumstix_c35e8da_06.11.18.elf  e-puck2_main-processor_gumstix.elf] and the selector must be placed in position 10.
+
The last version of the e-puck2 ROS node can be downloaded from the git: <code>git clone -b e-puck2 https://github.com/gctronic/epuck_driver_cpp.git</code>
  
The last version of the e-puck2 ROS node can be downloaded from the git: <code>git clone -b e-puck2 https://github.com/gctronic/epuck_driver_cpp.git</code>
+
=OpenCV=
 +
==Blob tracking==
 +
A simple demo was developed to track an orange blob. It is thought to be run with the omnivision extension. The robot rotate in place towards the target when it finds one.<br/>
 +
The code can be downloaded from the following repo: <code>git clone https://github.com/e-puck2/e-puck2_pi_blob-tracking.git</code>

Revision as of 12:24, 20 November 2018

1 System

The system is based on Raspbian Stretch and can be downloaded from the following link gctronic-stretch-ros-kinetic-opencv3.4.1.img.tar.gz.

user/pw: pi/raspberry
The system starts in console mode, to switch to desktop (LXDE) mode issue the command startx.

When booting the first time, the first thing to do is expanding the file system in order to use all the available space on the micro sd:
1. sudo raspi-config
2. Select Advanced Options and then Expand Filesystem
3. reboot

1.1 Installed software

  • ROS Kinetic
  • OpenCV 3.4.1
  • zram
  • SSH

2 Robot configuration

The e-puck2 robot must be programmed with the following firmware e-puck2_main-processor_gumstix.elf and the selector must be placed in position 10.
This is needed in order to exchange data with the robot through I2C.

3 ROS

The ROS workspace is located in ~/rosbots_catkin_ws/

Before starting the e-puck2 ROS node on the raspberry, issue the following commands:

To start the e-puck2 ROS node issue the command:
roslaunch epuck_driver_cpp epuck_controller.launch epuck_id:='3000'
This launch file will start the e-puck2 node and the camera node.

On the PC side issue the following commands in one terminal:

And then start rviz in another terminal:

  • rviz rviz
  • open the configuration file named single_epuck_driver_rviz.rviz you can find in epuck_driver_cpp/config/ directory

The last version of the e-puck2 ROS node can be downloaded from the git: git clone -b e-puck2 https://github.com/gctronic/epuck_driver_cpp.git

4 OpenCV

4.1 Blob tracking

A simple demo was developed to track an orange blob. It is thought to be run with the omnivision extension. The robot rotate in place towards the target when it finds one.
The code can be downloaded from the following repo: git clone https://github.com/e-puck2/e-puck2_pi_blob-tracking.git