e-puck2 robot side development and e-puck2: Difference between pages

From GCtronic wiki
(Difference between pages)
Jump to navigation Jump to search
No edit summary
 
 
Line 1: Line 1:
[{{fullurl:e-puck2}} e-puck2 main wiki]<br/>
=Hardware=
=Installation of the e-puck2 environment=
==Overview==
Eclipse_e-puck2 is a distribution of Eclipse IDE for C/C++ Developers specially modified to edit and compile e-puck2's projects out of the box. It doesn't require to be installed and everything needed is located in the package given. The only dependency needed to be able to run Eclipse is '''Java'''.
<span class="plainlinks">[http://www.gctronic.com/doc/images/e-puck2-overview.png <img width=500 src="http://www.gctronic.com/doc/images/e-puck2-overview_small.png">]</span>
<span class="plainlinks">[http://projects.gctronic.com/epuck2/wiki_images/e-puck2-features.png <img width=600 src="http://projects.gctronic.com/epuck2/wiki_images/e-puck2-features_small.png">]</span><br/>


==Installation for Windows==
The following figures show the main components offered by the e-puck2 robot and where they are physically placed:<br/>
===Java 8 32bits===
<span class="plainlinks">[http://projects.gctronic.com/epuck2/wiki_images/epuck2-components-position.png <img width=800 src="http://projects.gctronic.com/epuck2/wiki_images/epuck2-components-position_small.png">]</span><br/>
This section can be ignored if Java version 8 32bits is already installed on your computer.<br>
To verify, you can open the '''Programs and Features''' panel and search for a '''Java 8 Update xxx''' install.


#Go to the [https://www.java.com/en/download/manual.jsp Java download page] and download "Windows offline" This is the 32bits version of Java.
==Specifications==
#Run the downloaded installer and follow its instructions to proceed with the installation of Java 32bits.
The e-puck2 robot maintains full compatibility with its predecessor e-puck (e-puck HWRev 1.3 is considered in the following table):
#Close the internet browser if it opened at the end of the installation.
{| border="1"
|'''Feature'''
|'''e-puck1.3'''
|'''e-puck2'''
|'''Compatibility'''
|'''Additional'''
|-
|Size, weight
|70 mm diameter, 55 mm height, 150 g
|Same form factor: 70 mm diameter, 45 mm, 130 g
|style="text-align:center;" | <img width=40 src="http://www.gctronic.com/doc/images/ok.png">
|No e-jumper required
|-
|Battery, autonomy
|LiIPo rechargeable battery (external charger), 1800 mAh. <br/>About 3 hours autonomy. Recharging time about 2-3h.
|Same battery; USB charging, recharging time about 2.5h.
|style="text-align:center;" | <img width=30 src="http://www.gctronic.com/doc/images/plus.png">
|USB charging
|-
|Processor
|16-bit dsPIC30F6014A @ 60MHz (15 MIPS), DSP core for signal processing
|32-bit STM32F407 @ 168 MHz (210 DMIPS), DSP and FPU, DMA
|style="text-align:center;" | <img width=30 src="http://www.gctronic.com/doc/images/plus.png">
|~10 times faster
|-
|Memory
|RAM: 8 KB; Flash: 144 KB
|RAM: 192 KB; Flash: 1024 KB
|style="text-align:center;" | <img width=30 src="http://www.gctronic.com/doc/images/plus.png">
|RAM: 24x more capable<br/>Flash:~7x more capable
|-
|Motors
|2 stepper motors with a 50:1 reduction gear; 20 steps per revolution; about 0.13 mm resolution
|Same motors
|style="text-align:center;" | <img width=40 src="http://www.gctronic.com/doc/images/ok.png">
|
|-
|Wheels
|Wheels diamater = 41 mm <br/>Distance between wheels = 53 mm
|Same wheels
|style="text-align:center;" | <img width=40 src="http://www.gctronic.com/doc/images/ok.png">
|
|-
|Speed
|Max: 1000 steps/s (about 12.9 cm/s)
|Max: 1200 steps/s (about 15.4 cm/s)
|style="text-align:center;" | <img width=30 src="http://www.gctronic.com/doc/images/plus.png">
|20% faster
|-
|Mechanical structure
|Transparent plastic body supporting PCBs, battery and motors
|Same mechanics
|style="text-align:center;" | <img width=40 src="http://www.gctronic.com/doc/images/ok.png">
|
|-
|Distance sensor
|8 infra-red sensors measuring ambient light and proximity of objects up to 6 cm
|Same infra-red sensors <br/>Front real distance sensor, Time of fight (ToF), up to 2 meter.
|style="text-align:center;" | <img width=30 src="http://www.gctronic.com/doc/images/plus.png">
|ToF sensor
|-
|IMU
|3D accelerometer and 3D gyro
|3D accelerometer, 3D gyro, 3D magnetometer
|style="text-align:center;" | <img width=30 src="http://www.gctronic.com/doc/images/plus.png">
|3D magnetometer
|-
|Camera
|VGA color camera; typical use: 52x39 or 480x1
|Same camera; typical use: 160x120
|style="text-align:center;" | <img width=40 src="http://www.gctronic.com/doc/images/ok.png">
|Bigger images handling
|-
|Audio
|3 omni-directional microphones for sound localization<br/>speaker capable of playing WAV or tone sounds
|4 omni-directional microhpones (digital) for sound localization<br/>speaker capable of playing WAV or tone sounds
|style="text-align:center;" | <img width=30 src="http://www.gctronic.com/doc/images/plus.png">
| +1 front microphone
|-
|LEDs
|8 red LEDs around the robot, green body light, 1 strong red LED in front
|4 red LEDs and 4 RGB LEDs around the robot, green light, 1 strong red LED in front
|style="text-align:center;" | <img width=30 src="http://www.gctronic.com/doc/images/plus.png">
|4x RGB LEDs
|-
|Communication
|RS232 and Bluetooth 2.0 for connection and programming
|USB Full-speed, Bluetooth 2.0, BLE, WiFi
|style="text-align:center;" | <img width=30 src="http://www.gctronic.com/doc/images/plus.png">
|WiFi, BLE
|-
|Storage
|Not available
|Micro SD slot
|style="text-align:center;" | <img width=30 src="http://www.gctronic.com/doc/images/plus.png">
|Micro SD
|-
|Remote Control
|Infra-red receiver for standard remote control commands
|Same receiver
|style="text-align:center;" | <img width=40 src="http://www.gctronic.com/doc/images/ok.png">
|
|-
|Switch / selector
|16 position rotating switch
|Same selector
|style="text-align:center;" | <img width=40 src="http://www.gctronic.com/doc/images/ok.png">
|
|-
|Extensions
|Ground sensors, range and bearing, RGB panel, Gumstix extension, omnivision, your own
|All extension supported
|style="text-align:center;" | <img width=40 src="http://www.gctronic.com/doc/images/ok.png">
|
|-
|Programming
|Free C compiler and IDE, Webots simulator, external debugger
|Free C compiler and IDE, Webots simulator, onboard debugger (GDB)
|style="text-align:center;" | <img width=30 src="http://www.gctronic.com/doc/images/plus.png">
|Onboard debugger
|}


:<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/Java_windows.png <img width=500 src="http://projects.gctronic.com/epuck2/wiki_images/Java_windows.png">]</span><br/>
This is the overall communication schema:<br/>
:''Java download page''
<span class="plainlinks">[http://www.gctronic.com/doc/images/comm-overall-e-puck2E.jpg <img width=700 src="http://www.gctronic.com/doc/images/comm-overall-e-puck2E.jpg">]</span><br/>


===Eclipse_e-puck2===
==Documentation==
#Download the [http://projects.gctronic.com/epuck2/Eclipse_e-puck2/Eclipse_e-puck2_Win32_11_apr_2018.zip Eclipse_e-puck2 package for windows].
* '''Main microcontroller''': STM32F407, [http://projects.gctronic.com/epuck2/doc/STM32F407xx_datasheet.pdf datasheet], [http://projects.gctronic.com/epuck2/doc/STM32F407_reference-manual.pdf reference-manual]
#Unzip the downloaded file to the location you want (can take time). It is strongly recommended for better performance and less extraction time to use 7Zip. You can download it on http://www.7-zip.org.
* '''Programmer/debugger''': STM32F413, [http://projects.gctronic.com/epuck2/doc/STM32F413x_datasheet.pdf datasheet], [http://projects.gctronic.com/epuck2/doc/STM32F413_reference-manual.pdf reference-manual]
#You can now run the <code>Eclipse_e-puck2.exe</code> to launch Eclipse.
* '''Radio module''': Espressif ESP32, [http://projects.gctronic.com/epuck2/doc/esp32_datasheet_en.pdf datasheet], [http://projects.gctronic.com/epuck2/doc/esp32_technical_reference_manual_en.pdf reference-manual]
#You can create a shortcut to Eclipse_e-puck2.exe and place it anywhere if you want.
* '''Camera''': PixelPlus PO8030D CMOS image sensor, [http://projects.gctronic.com/E-Puck/docs/Camera/PO8030D.pdf datasheet], no IR cut filter
* '''Microphones''': STM-MP45DT02, [http://projects.gctronic.com/epuck2/doc/mp45dt02.pdf datasheet]
* '''Optical sensors''': Vishay Semiconductors Reflective Optical Sensor, [http://projects.gctronic.com/epuck2/doc/tcrt1000.pdf datasheet]
* '''ToF distance sensor''': STM-VL53L0X, [http://projects.gctronic.com/epuck2/doc/VL53L0X-Datasheet.pdf datasheet], [http://projects.gctronic.com/epuck2/doc/VL53L0X-UserManual-API.pdf user-manual]
* '''IMU''': InvenSense MPU-9250, [http://projects.gctronic.com/epuck2/doc/MPU-9250-product-specification.pdf product-specification], [http://projects.gctronic.com/epuck2/doc/MPU-9250-Register-Map.pdf register-map]
* '''Motors''': [http://www.e-puck.org/index.php?option=com_content&view=article&id=7&Itemid=9 details]
* '''Speaker''': Diameter 13mm, power 500mW, 8 Ohm, DS-1389 or PSR12N08AK or similar
* '''IR receiver''': TSOP36230


:<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/Eclipse_e-puck2_Folder_Windows.png <img width=800 src="http://projects.gctronic.com/epuck2/wiki_images/Eclipse_e-puck2_Folder_Windows.png">]</span><br/>
==Migrating from e-puck1.x to e-puck2==
:''Eclipse_e-puck2 folder obtained after extraction''
The e-puck2 robot maintains full compatibility with its predecessor e-puck, but there are some improvements that you should be aware of.<br/>


'''Important things to avoid :'''
First of all the e-jumper, that is the small board that is attached on top of the e-puck1.x, isn't anymore needed in the e-puck2. The components available on the e-jumper are integrated directly in the robot board. On top of the e-puck2 you'll see a quite big free connector, this is used to attach the extensions board designed for the e-puck1.x that are fully compatible with the e-puck2; you must not connect the e-jumper in this connector.<br/>
:1. The path to the Eclipse_e-puck2 folder must contain zero space.  
::Example :
Secondly you don't need anymore to unplug and plugin the battery for charging, but instead you can charge the battery (up to 1 ampere) directly by connecting the USB cable. If you want you can still charge the battery with the e-puck1.x external charger, in case you have more than one battery.<br/>
::<code>C:\epfl_stuff\Eclipse_e-puck2</code> OK
::<code>C:\epfl stuff\Eclipse_e-puck2</code> NOT OK
:2. You must not put Ellipse_e-puck2 folder into '''Program Files (x86)'''. Otherwise the compilation when using Eclipse will not work.
:3. The file’s structure in the Eclipse_e-puck2 folder must remain the same. It means no file inside this folder must be moved to another place.


==Installation for Linux==
Moreover you don't need anymore a special serial cable (with probably an RS232 to USB adapter) to be able to communicate with the robot, but you can use the USB cable. Once connected to the computer a serial port will be available that you can use to easily exchange data with the robot.
===Java 8===
This section can be ignored if Java is already installed on your computer.<br>
To verify whether it is installed or not you can type the following command into a terminal window:
<pre>update-java-alternatives -l</pre>
If Java is installed, you will get some information about it, otherwise the command will be unknown.<br>
You need to have Java 1.8.xxxx listed to be able to run Eclipse_e-puck2.


Type the following commands in a terminal session to install Java SDK:
==Extensions==
<pre>sudo add-apt-repository ppa:openjdk-r/ppa
All the extensions (ground sensors, range and bearing, RGB panel, gumstix and omnvision) are supported by the e-puck2 robot, this means that if you have some extensions for the e-puck1.x you can still use them also with e-puck2.<br/>
sudo apt-get update
For more information about using the gumstix extension with e-puck2 robot refer to [http://www.gctronic.com/doc/index.php?title=Overo_Extension#e-puck2 http://www.gctronic.com/doc/index.php?title=Overo_Extension#e-puck2].
sudo apt-get install openjdk-8-jre </pre>


===Eclipse_e-puck2===
=Getting Started=
#Install <code>make</code> (probably you already have it installed) by issueing the command: <code>sudo apt-get install make</code>
The e-puck2 robot features 3 chips onboard:
#Download the Eclipse_e-puck2 package for Linux [http://projects.gctronic.com/epuck2/Eclipse_e-puck2/Eclipse_e-puck2_Linux_11_apr_2018_32bits.tar.gz 32bits] / [http://projects.gctronic.com/epuck2//Eclipse_e-puck2/Eclipse_e-puck2_Linux_11_apr_2018_64bits.tar.gz 64bits]. Pay attention to the 32bits or 64bits version. If unsure which Linux version you have, enter the following comand <code>uname -a</code> in the terminal window and look for i686 (32bit) or x86_64 (64 bit)
* the main microcontroller, that is responsible for handling the sensors and actuators and which runs also the demos/algorithms
#Extract the downloaded file to the location you want (can take time).
* the programmer, that provides programming/debugging capabilties and moreover it configures the USB hub and is responsible for the power management (on/off of the robot and battery measure)
#You can now run the <code>Eclipse_e-puck2</code> executable to launch Eclipse.
* radio module, that is responsible for handling the wireless communication (WiFi, BLE, BT), the RGB LEDs and the user button (the RGB LEDs and button are connected to the radio module due to the pin number limitation on the main microcontroller)


:<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/Eclipse_e-puck2_Folder_Linux.png <img width=800 src="http://projects.gctronic.com/epuck2/wiki_images/Eclipse_e-puck2_Folder_Linux.png">]</span><br/>
The robot is shipped with the last firmware version programmed on all 3 chips, so you can immediately start using the robot.<br/>
:''Eclipse_e-puck2 folder obtained after extraction''
The following sections explain the basic usage of the robot, <b>all the users should read this chapter completely in order to have a minimal working system ready to play with the e-puck2 robot</b>. Some sections will have more detailed information that can be read by following the links provided.


Note : The icon of the Eclipse_e-puck2 executable will appear after the first launch of the program.
When required, dedicated informations are given for all platforms (Windows, Linux, Mac). The commands given for Linux are related to the Ubuntu distribution, similar commands are available in other distributions.  


'''Important things to avoid :'''
==Turn on/off the robot==
:1. You cannot create a Link to the Eclipse_e-puck2 executable because otherwise the program will think its location is where the Link is and it will not find the resource located in the Eclipse_e-puck2 folder.
To turn on the robot you need to press the power button (blue button) placed on the bottom side of the board, near the speaker, as shown in the following figures:
:2. The path to the Eclipse_e-puck2 folder must contain zero space.  
::<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/e-puck2-btn-on-off2.jpg <img width=250 src="http://projects.gctronic.com/epuck2/wiki_images/e-puck2-btn-on-off2-small.jpg">][http://projects.gctronic.com/epuck2/wiki_images/e-puck2-btn-on-off.jpg <img width=300 src="http://projects.gctronic.com/epuck2/wiki_images/e-puck2-btn-on-off-small.jpg">]</span><br/>
::Example :
To turn off the robot you need to press the power button for 1 second.
::<code>/home/student/epfl_stuff/Eclipse_e-puck2</code> OK
::<code>/home/student/epfl stuff/Eclipse_e-puck2</code> NOT OK
:3. The file’s structure in the Eclipse_e-puck2 folder must remain the same. It means no file inside this folder must be moved to another place.


==Installation for Mac==
==Meaning of the LEDs==
===Command Line Tools ===
The e-puck2 has three groups of LEDs that are not controllable by the user.
To compile on Mac with Eclipse_e-puck2, it is necessary to have the Command Line Tools installed. It is a bundle of many commonly used tools.<br>
You can install it by typing the following command in a terminal window. It will then open a popup asking you if you want to install this bundle. Otherwise it will tell you it is already installed.
<pre>xcode-select --install</pre>


===Java 8===
::<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/e-puck2_top_leds.png <img width=250 src="http://projects.gctronic.com/epuck2/wiki_images/e-puck2_top_leds.png">]</span><br/>
This section can be ignored if Java is already installed on your computer.<br>
::''Top view of the e-puck2''
To verify whether it is installed or not you can type the following command into a terminal window. It will list all the Java runtimes installed on your Mac.
<pre>/usr/libexec/java_home -V</pre>
You need to have <code>Java SE 8</code> listed to be able to run Eclipse_e-puck2.


:1. Go to the [http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html Java download page] and download the <code>Mac OS X Java 8 SE Development Kit</code>. It is the .dmg file without the Demos and Samples.
*Charger: RED if charging, GREEN if charge complete and RED and GREEN if an error occurs
::For example: <code>jdk-8uXXX-macosx-x64.dmg</code>
*USB: Turned ON if the e-puck2 detects a USB connection with a computer
:2. Open the .dmg file downloaded, run the installer and follow the instructions to proceed with the installation of Java SDK.
*STATUS: Turned ON if the robot is ON and OFF if the robot is OFF. When ON, gives an indication of the level of the battery. Also blinks GREEN if the program is running during a debug session.


:<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/Java_mac.png <img width=500 src="http://projects.gctronic.com/epuck2/wiki_images/Java_mac.png">]</span><br/>
Battery level indications (STATUS RGB LED):
:''Java download page''
*GREEN if the system's tension is greater than 3.5V
*ORANGE if the system's tension is between 3.5V and 3.4V
*RED if the system's tension is between 3.4V and 3.3V
*RED blinking if the system's tension is below 3.3V


===Eclipse_e-puck2===
The robot is automatically turned OFF if the system's tension gets below 3.2V during 10 seconds.
:1. Download the [http://projects.gctronic.com/epuck2/Eclipse_e-puck2/Eclipse_e-puck2_Mac_11_apr_2018.dmg Eclipse_e-puck2 package for Mac].
:2. Open the .dmg file downloaded and DragAndDrop the Eclipse_e-puck2.app into the Applications folder
::Note : You can place the Eclipse_e-puck2.app anywhere, as long as the full path to it doesn’t contain any space, if you don’t want it to be in Applications.
:3. You can create an Alias to Eclipse_e-puck2.app and place it anywhere if you want.


===First launch and Gatekeeper===
==Connecting the USB cable==
It’s very likely that Gatekeeper (one of the protections of Mac OS) will prevent you to launch Eclipse_e-puck2.app because it isn’t signed from a known developer.<br>
A micro USB cable (included with the robot in the package) is needed to connect the robot to the computer. There are two connectors, one placed on top of the robot facing upwards and the other placed on the side of the robot, as shown in the following figures. Both can be used to charge the robot (up to 1 ampere) or to communicate with it, but do not connect two cables at the same time. Connect the USB cable where is more comfortable to you.
If you can’t run the program because of a warning of the system, press <code>OK</code> and try to launch it by right clicking on it and choosing <code>open</code> in the contextual menu (may be slow to open the first time).<br>
::<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/e-puck2-usb-conn.jpg <img width=250 src="http://projects.gctronic.com/epuck2/wiki_images/e-puck2-usb-conn-small.jpg">][http://projects.gctronic.com/epuck2/wiki_images/e-puck2-usb-conn2.jpg <img width=300 src="http://projects.gctronic.com/epuck2/wiki_images/e-puck2-usb-conn2-small.jpg">]</span><br/>
If <code>Unable to open "Eclipse_e-puck2.app" because this app comes from an unidentified developer.</code> or if <code>"Eclipse.app" is corrupted and cannot be opened. You should place this item in the Trash.</code> appears after executing the app the first time, it is needed to disable temporarily Gatekeeper.


To do so :
==Installing the USB drivers==
The USB drivers must be installed only for the users of a Windows version older than Windows 10:


:1. Go to <code>System Preferences->security and privacy->General</code> and authorize downloaded application from <code>Anywhere</code>.
#Download and open [http://projects.gctronic.com/epuck2/zadig-2.3.exe zadig-2.3.exe]
#Connect the e-puck2 with the USB cable and turn it on. Three unknown devices appear in the device list of the program, namely '''e-puck2 STM32F407''', '''e-puck2 GDB Server (Interface 0)''' and '''e-puck2 Serial Monitor (Interface 2)'''.
#For each of the three devices mentioned above, select the <code>USB Serial (CDC)</code> driver and click on the <code>Install Driver</code> button to install it. Accept the different prompts which may appear during the process. At the end you can simply quit the program and the drivers are installed. These steps are illustrated on Figure 3 below.
::Note : The drivers installed are located in <code>C:\Users\"your_user_name"\usb_driver</code>


::<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/security_tab_mac.png <img width=500 src="http://projects.gctronic.com/epuck2/wiki_images/security_tab_mac.png">]</span><br/>
:<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/Zadig_e-puck2_STM32F407.png <img width=500 src="http://projects.gctronic.com/epuck2/wiki_images/Zadig_e-puck2_STM32F407.png">]</span><br/>
::''Security settings of Mac OS''
::''Example of driver installation for e-puck2 STM32F407''


::If you are on Mac OS Sierra or greater (greater or equal to Mac OS 10.12), you must type the following command on the terminal to make the option above appear.
The drivers are automatically installed with Windows 10, Linux and Mac OS.
::<pre>sudo spctl --master-disable</pre>
:2. Now you can try to run the application and it should work.
:3. If Eclipse opened successfully, it is time to reactivate Gatekeeper. Simply set back the setting of Gatekeeper.
::For the ones who needed to type a command to disable Gatekeeper, here is the command to reactivate it.
::<pre>sudo spctl --master-enable</pre>


This procedure is only needed the first time. After that Gatekeeper will remember your choice to let run this application and will not bother you anymore, as long as you use this application. If you re-download it, you will have to redo the procedure for Gatekeeper.
Anyway in Linux in order to access the serial ports, a little configuration is needed. Type the following command in a terminal session: <code>sudo adduser $USER dialout</code>. Once done, you need to log off to let the change take effect.


'''Important things to avoid :'''
==Finding the USB serial ports used==
:1. The path to the Eclipse_e-puck2.app must contain zero space.  
Two ports are created by the e-puck2's programmer when the USB cable is connected to the robot (even if the robot is turned off):
::Example :
* '''e-puck2 GDB Server'''. The port used to program and debug the e-puck2.
::<code>/home/student/epfl_stuff/Eclipse_e-puck2</code> OK
* '''e-puck2 Serial Monitor'''. Serial communication between the PC and the radio module (used also to program the radio module).
::<code>/home/student/epfl stuff/Eclipse_e-puck2</code> NOT OK
:2. The file’s structure in the Eclipse_e-puck2.app must remain the same. It means no file inside this app must be moved to another place.


=Get the source code=
A third port could be available depending on the code inside the e-puck2's microcontroller. With the factory firmware a port named '''e-puck2 STM32F407''' is created.
The source code is available in the git repo [https://github.com/e-puck2/e-puck2_main-processor https://github.com/e-puck2/e-puck2_main-processor].<br/>
===Windows===
#Open the Device Manager
#Under '''Ports (COM & LPT)''' you can see the virtual ports connected to your computer.
#Do a '''Right-click -> properties''' on the COM port you want to identify.
#Go under the '''details''' tab and select '''Bus reported device description''' in the properties list.
#The name of the port should be written in the text box below.
#Once you found the desired device, you can simply look at its port number '''(COMX)'''.


==Configuring the Debugger's settings==
===Linux===
Eclipse_e-puck2 contains everything needed to compile, program and debug the e-puck2.<br>
:1. Open a terminal window (<code>ctrl+alt+t</code>) and enter the following command: <code>ls /dev/ttyACM*</code>
The only settings to configure with a new project are located under the '''Debug Configurations''' tab of Eclipse (you can also find it on '''Run->Debug Configurations''').  
:2. Look for '''ttyACM0''' and '''ttyACM1''' in the generated list, which are respectively '''e-puck2 GDB Server''' and '''e-puck2 Serial Monitor'''. '''ttyACM2''' will be also available with the factory firmware, that is related to '''e-puck2 STM32F407''' port
:<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/Debug_configuration.png <img width=231 src="http://projects.gctronic.com/epuck2/wiki_images/Debug_configuration.png">]</span><br/>
Note : Virtual serial port numbering on Linux depends on the connections order, thus it can be different if another device using virtual serial ports is already connected to your computer before connecting the robot, but the sequence remains the same.
Once in the settings, select '''Generic Blackmagic Probe''' preset on the left panel. Then you need to configure two things :


#If you already have a project, under the '''main''' tab, you need to select which project to debug and the path to the compiled file. If the project has already been compiled, Eclipse must have indexed the binaries and you can list the project and the compiled files using respectively the '''Browse...''' and '''Search Project...''' buttons. If you do not already have a project, add a random name as the title which will act as a place holder, allowing you to apply the next configuration.
===Mac===
#Under the '''Startup''' tab, you need to replace the path to the serial port written on the first line of the text box by the one used by the GDB Server of your e-puck. [[#Finding the USB serial ports used | See how to find it]].
:1. Open a terminal window and enter the following command: <code>ls /dev/cu.usbmodem*</code>
:* For Windows, it will be '''\\.\COMX''', X being the port number.
:2. Look for two '''cu.usbmodemXXXX''', where XXXX is the number attributed by your computer. You should find two names, with a numbering near to each other, which are respectively '''e-puck2 GDB Server''' (lower number) and '''e-puck2 Serial Monitor''' (higher number). A third device '''cu.usbmodemXXXX''' will be available with the factory firmware, that is related to '''e-puck2 STM32F407''' port
:* For Linux, it will be '''/dev/ttyACMX''', X being the port number
:* For Mac, it will be '''/dev/cu.usbmodemXXXXX''', XXXXX being the port number.
:* You can also type '''${COM_PORT}''' instead of the com port in order to use the variable COM_PORT for the debug configuration.<br>To change the value of this variable, go to the '''main''' tab again, click on the '''Variables...''' button and click on the '''Edit Variables...''' button. The opened window will let you edit the value of the variable.<br>Using the variable COM_PORT instead of the real com port in a debug configuration is useful if you have multiple debug configurations for example. If for one reason you need to change the com port to use, then you can simply edit the variable COM_PORT instead of editing the com port for each debug configuration


If you want to debug another project, you can change the settings of the '''Generic Blackmagic Probe''' preset or copy it into another preset and configure this one in order to have one preset by project.
Note : Virtual serial port numbering on Mac depends on the physical USB port used and the device. If you want to keep the same names, you must connect to the same USB port each time.
Now you should be able to use the debugger with Eclipse.


==Creating a project==
==PC interface==
===Basic standard project===
<span class="plainlinks">[http://projects.gctronic.com/epuck2/wiki_images/monitor.png <img width=250 src="http://projects.gctronic.com/epuck2/wiki_images/monitor_small.png">]<br/>
[https://github.com/e-puck2/e-puck2_main-processor.git e-puck2_main-processor] is the basic standard project containing all the libraries written for the e-puck2. Refer to the [http://www.gctronic.com/doc/index.php?title=e-puck2#Library Library] section to download the complete version.<br>
A PC application was developed to start playing with the robot: you can have information about all the sensors, receive camera images and control the leds and motors.<br/>
The basic standard project shows how to use the libraries and can be interfaced with [[#PC interface | e-puck2 monitor]].<br/>
Beware that it's not mandatory to download this application in order to work with the robot, but it is a nice demo that gives you an overview of all the sensors and actuators available on the robot, this is a first step to gain confidence with the robot.<br/>
This project can be added to Eclipse_e-puck2 by following the next steps:<br>
# Run Eclipse and then select '''File->New->Makefile Project with Existing Code'''.
# Next choose the project folder and set a project name (otherwise you can keep the one created by Eclipse). Choose '''None''' for the the toolchain.
# Click on the '''Finish''' button and the project is added to Eclipse.  


===Project template===
With the factory firmwares programmed in the robot, place the selector in position 8, attach the USB cable and turn on the robot. Enter the correct port (the one related to <code>e-puck2 STM32F407</code>) in the interface and click <code>connect</code>.
The basic standard project can also be used as a library to build your own project on top of it.<br>


To accomplish that, you have to copy the folder '''Project_template''', contained in the e-puck2_main-processor project, where you want to place your project.<br>
The source code is available from the repository [https://github.com/e-puck2/monitor https://github.com/e-puck2/monitor].<br/>
You can of course rename the folder to the name you want.<br>


The next step is to edit the makefile of your project. Set the name of your project, write the updated path to the e-puck2_main-processor folder, and also rewrite the path to the .c files. Lastly, include the path for any desired .h files from other folders.<br>
===Available executables===
All the .h files located next to the makefile are automatically included in the compilation. But if you need to place them into folders, you have to specify these folders in the makefile.
* [http://projects.gctronic.com/epuck2/monitor_win.zip Windows executable]: tested on Windows 7 and Windows 10
This makefile uses the main makefile of the e-puck2_main-processor project. This means you can add custom commands to the makefile but it should not interfere with the main makefile.
* [http://projects.gctronic.com/epuck2/monitor_mac.zip Max OS X executable]
* [http://projects.gctronic.com/epuck2/monitor_linux32bit.tar.gz Linux 32 bit] / [http://projects.gctronic.com/epuck2/monitor_linux64bit.tar.gz Linux 64 bit]
On Linux remember to apply the configuration explained in the chapter [http://www.gctronic.com/doc/index.php?title=e-puck2#Installing_the_USB_drivers Installing the USB drivers] in order to access the serial port.


The result of the compilation will appear in a build folder in your project folder.
==Installing the dependencies for firmwares updates==
You can update the firmware for all 3 chips: the main microcontroller, the radio module and the programmer. For doing that, you need some tools to be installed on the system.


===Adding to Eclipse_epuck2===
===Windows===
#To add the project into Eclipse, you need to select '''File->New->Makefile Project with Existing Code'''.
To upload a new firmware in the microcontroller or in the radio module, you don't need to install anything, the packages provided include all the dependencies.
#Next choose your project folder and set a project name. Choose '''None''' for the the toolchain.
#Click on the '''Finish''' button and the project is added to Eclipse.
#Rename the file '''Debug_project_template.launch''' contained in the project folder by the name you want for the debug configuration of your project.
#Go to '''Run->Debug Configurations...''' and select on the left your new debug configuration and set the project to debug and the path to the compiled file of the project ([[#Configuring the Debugger's settings |as explained in the chapter before]]). If there is nothing apering when you press '''Search Project...''' then you must enter the '''.elf''' file name by hand, which can be found in your project folder under a folder named '''build'''.
#Go to  '''Project->Properties->C/C++ General->Preprocessor Include Paths, Macros etc->Providers''' and Check '''CDT Cross GCC Built-in Compiler Settings'''.<br> Then in the textbox below, write '''arm-none-eabi-gcc ${FLAGS} -E -P -v -dD "${INPUTS}"'''.
#Create a linked folder inside your project that links to the e-puck2_main-processor library. This allows Eclipse to index the declarations and implementations of the functions and variables in the code of the library.
##Go to '''File->New->Folder'''.
##Check '''Advanced >>''' on the bottom.
##Choose '''Link to alternate location (Linked Folder)'''.
##Type '''PROJECT_LOC''' and then add to this path the path to the e-puck2_main-processor folder. For example '''PROJECT_LOC/../e-puck2_main-processor''' if the library is located as the same level as your project folder.
#Before you compile, make sure the robot is turned on, and in addition make sure that the Makefile, has a capital M in the front.
#After you compile the project and if it succeeded, select the project root folder and go to '''Project->C/C++ Index->Rebuild''' to rebuild the index. (We need to have compiled at least one time in order to let Eclipse find all the paths to the files used.)


You should now be able to use the project with Eclipse.
To upload a new firmware in the programmer you need to install an application called <code>DfuSe</code> released by STMicroelectronics. You can download it from [http://projects.gctronic.com/epuck2/en.stsw-stm32080_DfuSe_Demo_V3.0.5.zip DfuSe_V3.0.5.zip].


==Flashing the main microcontroller==
===Linux===
In order to update the firmware of the main microcontroller (STM32F407) you can either use Eclipse (as explained in section [http://www.gctronic.com/doc/index.php?title=e-puck2#Configuring_the_Debugger.27s_settings Configuring the Debugger settings]) or you can do it manually as explained in this section. The onboard programmer run a gdb server, so we can use gdb commands to upload a new firmware.<br/>
To upload a new firmware in the microcontroller or in the radio module, you need:
1. download the gdb init file [http://projects.gctronic.com/epuck2/mygdbinit mygdbinit] and place it in the same folder of the compiled firmware. This file has the following content:
* Python (>= 3.4): <code>sudo apt-get install python3</code>
<pre>target extended-remote \\.\COM72
* Python pip: <code>sudo apt-get install -y python3-pip</code>
monitor swdp_scan
* pySerial (>= 2.5): <code>sudo pip3 install pyserial</code>
attach 1
set mem inaccessible-by-default off
load</pre>
In this file you need to change the port to reflect the one of the <code>GDB server</code> (see chapter [http://www.gctronic.com/doc/index.php?title=e-puck2#Finding_the_USB_serial_ports_used Finding the USB serial ports used]).


2. issue the following command to start the upload
To upload a new firmware in the programmer you need:
<pre>Windows: arm-none-eabi-gdb.exe --interpreter=mi -x mygdbinit firmware.elf
* dfu-util: <code>sudo apt-get install dfu-util</code>
Linux/Mac: arm-none-eabi-gdb --interpreter=mi -x mygdbinit firmware.elf</pre>
 
In this command you need to change the name of the firmware with the one you have.<br/>
===Mac===
Moreover if the <code>PATH</code> variable is not set (see chapter [http://www.gctronic.com/doc/index.php?title=e-puck2#Configuring_the_PATH_variable Configuring the PATH variable]) you need to insert the absolute path to the debugger that you can find in the Eclipse package (see chapter [http://www.gctronic.com/doc/index.php?title=e-puck2#Installation_of_the_e-puck2_environment Installation of the e-puck2 environment]) inside the directory <code>Tools\gcc-arm-none-eabi-XXX\bin</code>.
Install the [https://brew.sh Homewbrew] package manager by opening a terminal and issueing:<br/>
<code>/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"</code><br/>
and then:<br/>
<code>brew upgrade</code><br/>
 
To upload a new firmware in the microcontroller or in the radio module, you need:
* Python (>= 3.4): <code>brew install python</code> (it will install also <code>pip</code>)
* pySerial (>= 2.5): <code>pip3 install pyserial</code>  
 
To upload a new firmware in the programmer you need:
* dfu-util: <code>brew install dfu-util</code>
 
==PC side development==
This section is dedicated to the users that develop algorithms on the PC side and interact with the robot remotely through a predefined communication protocol. These users don't modify the firmware of the robot, but instead they use the factory firmware released with the robot. They update the robot firmware only when there is an official update. <br/>
The remote control of the robot, by receiving sensors values and setting the actuators, is done through the following channels: Bluetooth, Bluetooth Low Energy, WiFi, USB cable.<br/>
Examples of tools/environment used by these users:
# Aseba
# Simulator (e.g. Webots)
# ROS
# iOS, Android apps
# Custom PC application
# IoT (e.g. IFTTT)
If you fall into this category, then follow this section for more information: [http://www.gctronic.com/doc/index.php?title=e-puck2_PC_side_development PC side development].<br/>
 
=Main microcontroller=
The e-puck2 robot main microcontroller is a 32-bit STM32F407 that runs at 168 MHz (210 DMIPS) and include DSP, FPU and DMA capabilities. The version chosen for the e-puck2 has 192 KB of total RAM and 1024 KB of flash, so there is a lot of memory to work with.<br/>
This chip is responsible for handling the sensors and actuators and runs also the demos and algorithms.
 
==Factory firmware==
The main microcontroller of the robot is initially programmed with a firmware that includes many demos that could be started based on the selector position, here is a list of the demos with related position and a small description:
* Selector position 0: Aseba
* Selector position 1: Shell
* Selector position 2: Read proximity sensors
* Selector position 3: Asercom protocol v2 (BT)
* Selector positoin 4: Range and bearing extension (receiver)
* Selector position 5: Range and bearing extension (transmitter)
* Selector position 6: ESP32 UART communication test
* Selector position 7: ...
* Selector position 8: Asercom protocol v2 (USB)
* Selector position 9: Asercom protocol (BT)
* Selector position 10: This position is used to work with the gumstix extension.
* Selector position 11: Simple obstacle avoidance + some animation
* Selector position 12: Hardware test
* Selector position 13: LEDs reflect orientation of the robot
* Selector position 14: Read magnetometer sensor
* Selector position 15: ...
The pre-built firmware is available here [http://projects.gctronic.com/epuck2/e-puck2_main-processor_27.08.18_f0b667a.elf main microcontroller factory firmware (27.08.18)].
 
==Firmware update==
Now and then there could be an official firmware update for the robot and it's important to keep the robot updated with the last firmware to get possibile new features, improvements and for bug fixes.<br/>
The onboard programmer run a GDB server, so we use GDB commands to upload a new firmware, for this reason a toolchain is needed to upload a new firmware to the robot.<br/>
The following steps explain how to update the main microcontroller firmware:<br/>
1. Download the package containing the required toolchain and script to program the robot: [http://projects.gctronic.com/epuck2/e-puck2-prog-main-micro-windows.zip Windows], Linux [http://projects.gctronic.com/epuck2/e-puck2-prog-main-linux32.tar.gz 32 bits]/[http://projects.gctronic.com/epuck2/e-puck2-prog-main-linux64.tar.gz 64 bits], [http://projects.gctronic.com/epuck2/e-puck2-prog-main-micro-macos.zip Mac OS]<br/>
2. Download the last version of the [http://projects.gctronic.com/epuck2/e-puck2_main-processor_27.08.18_f0b667a.elf main microcontroller factory firmware (27.08.18)], or use your custom firmware<br/>
3. Extract the package and put the firmware file (with <code>elf</code> extension) inside the package directory; beware that only one <code>elf</code> file must be present inside this directory<br/>
4. Attach the USB cable and turn on the robot<br/>
5. Run the script from the package directory:<br/>
:Windows: double click <code>program.bat</code><br/>
:Linux/Mac: issue the following command in a terminal <code>./program.sh</code>. If you get permission errors, then issue <code>sudo chmod +x program.sh</code> to let the script be executable.<br/>


When the upload is complete you'll see an output like in the following figure:<br/>
When the upload is complete you'll see an output like in the following figure:<br/>
<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/f407-flashing.png <img width=400 src="http://projects.gctronic.com/epuck2/wiki_images/f407-flashing.png">]</span><br/>
<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/f407-flashing.png <img width=400 src="http://projects.gctronic.com/epuck2/wiki_images/f407-flashing.png">]</span><br/>
The final line should contain <code>".data",</code> , and it should all be enclosed at the end with <code>(gdb)</code>. You can then close the terminal window.
The final lines should contain the entry <code>".data",</code>, this means that the upload was successfull. You can then close the terminal window if it is still open.


If you encounter some problem, try to unplug and plug again the USB cable and power cycle the robot, then retry.
If you encounter some problem, try to unplug and plug again the USB cable and power cycle the robot, then retry.
==Robot side development==
If you are an embedded developer and are brave enough, then you have complete access to the source code running on the robot, so you can discover what happen inside the main microcontroller and modify it to accomodate your needs. Normally the users that fall into this category develop algorithms optimized to run directly on the microcontroller, such as:
# onboard image processing
# swarm algorithms
# fully autonomous behaviors
# ...
For more information about programming the robot itself, refer to section [http://www.gctronic.com/doc/index.php?title=e-puck2_robot_side_development Robot side development]
=Radio module=
The radio module chosen for the e-puck is the new ESP32 chip from [https://www.espressif.com/ Espressif], integrating a dual core that run up to 240 MHz, 4 MB of flash and 520 KB of RAM. It supports WiFi standards 802.11 b/g/n (access point mode supported), Bluetooth and Bluetooth LE 4.2. It is the successor of the ESP8266 chip. The following figure shows the various peripherals available on the ESP32:<br/>
<span class="plain links"><img width=400 src="http://projects.gctronic.com/epuck2/wiki_images/esp32-peripherals.png"></span>
This chip first of all is responsible for handling the wireless communication, moreover it handles also the RGB LEDs (with PWM) and the user button. The RGB LEDs and button are connected to the radio module due to the pin number limitation on the main microcontroller.
==Factory firmware==
The radio module of the robot is initially programmed with a firmware that supports Bluetooth communication.<br/>
The pre-built firmware is available here [http://projects.gctronic.com/epuck2/esp32-firmware_23.08.18.zip radio module factory firmware (23.08.18)].
==WiFi firmware==
At the moment the factory firmware supports only Bluetooth, if you want to work with WiFi you need to program the radio with a dedicated firmware, refer to section [http://www.gctronic.com/doc/index.php?title=e-puck2_PC_side_development#WiFi PC side development: WiFi].
==Firmware update==
In order to update the firmware of the ESP32 WiFi module you need to use a python script called <code>esptool</code> provided by [https://www.espressif.com/ Espressif] (manufacturer of the chip). This script was modified to work with the e-puck2 robot and is included in the provided package. The following steps explain how to update the radio module firmware:<br/>
1. Download the package containing the required tools and script to program the robot: [http://projects.gctronic.com/epuck2/e-puck2-prog-radio-windows.zip Windows], [http://projects.gctronic.com/epuck2/e-puck2-prog-radio-macos.zip Linux / Mac]<br/>
2. Download the last version of the [http://projects.gctronic.com/epuck2/esp32-firmware_23.08.18.zip radio module factory firmware (23.08.18)], or use your custom firmware. The firmware is composed by 3 files named <code>bootloader.bin</code>, <code>ESP32_E-Puck_2.bin</code> and <code>partitions_singleapp.bin</code><br/>
3. Extract the package and put the firmware files inside the package directory; beware that the name of the <code>.bin</code> files must be the same as indicated in step 2<br/>
4. Attach the USB cable and turn on the robot<br/>
5. Run the script from the package directory:<br/>
:Windows: double click <code>program.bat</code><br/>
:Linux/Mac: issue the following command in a terminal <code>./program.sh</code>. If you get permission errors, then issue <code>sudo chmod +x program.sh</code> to let the script be executable.<br/>
The upload should last about 10-15 seconds and you'll see the progress as shown in the following figure:<br/>
<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/esp32-flashing1.png <img width=400 src="http://projects.gctronic.com/epuck2/wiki_images/esp32-flashing1.png">]</span><br/>
When the upload is complete you'll see that all 3 bin files are uploaded correctly as shown in the following figure:<br/>
<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/esp32-flashing2.png <img width=400 src="http://projects.gctronic.com/epuck2/wiki_images/esp32-flashing2.png">]</span><br/>
Sometime you could encounter a timeout error as shown in the following figures; in these cases you need to unplug and plug again the USB cable and power cycle the robot, then you can retry.<br/>
<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/esp32-flashing3.png <img width=400 src="http://projects.gctronic.com/epuck2/wiki_images/esp32-flashing3.png">]</span>
<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/esp32-flashing4.png <img width=400 src="http://projects.gctronic.com/epuck2/wiki_images/esp32-flashing4.png">]</span><br/>
==Development==
Probably, you'll never need to touch the firmware running in the radio module, but in case you need to modify the code or you're simply curious about what is happening at the low level, then refer to the section [http://www.gctronic.com/doc/index.php?title=e-puck2_radio_module_development Radio module development].
=Programmer=
==Factory firmware==
The programmer is initially programmed with a firmware based on [https://github.com/blacksphere/blackmagic/wiki Black Magic Probe programmer/debugger].<br/>
The pre-built firmware is available here [http://projects.gctronic.com/epuck2/programmer-firmware_09.04.18_252d604.bin programmer-firmware.bin (09.04.18)]; it is also available in dfu format here [http://projects.gctronic.com/epuck2/programmer-firmware_09.04.18_252d604.dfu programmer-firmware.dfu (09.04.18)].
==Firmware update==
The programmer's microcontroller features a factory bootloader that can be entered by acting on some special pins, the bootloader mode is called DFU (device firmware upgrade). You can enter DFU mode by contacting two pinholes together while inserting the USB cable (no need to turn on the robot). The two pin holes are located near the USB connector of the e-puck2, see the photo below.
::<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/e-puck2_top_leds_DFU_413.png <img width=200 src="http://projects.gctronic.com/epuck2/wiki_images/e-puck2_top_leds_DFU_413.png">]</span><br/>
::''Location of the pin holes to put the programmer into DFU''
The programmer will be recognized as <code>STM Device in DFU Mode</code> device.
'''Note for Windows users''': the device should be recognized automatically (in all Windows versions), but in case it won't be detected then you need to install a <code>libusbK</code> driver for the DFU device.<br>
Follow the same procedure as explained in section [http://www.gctronic.com/doc/index.php?title=e-puck2#Installing_the_USB_drivers Installing the USB drivers] using <code>libusbK</code> driver instead of <code>USB Serial (CDC)</code>.
===Linux/Mac===
In order to update the programmer firmware you need an utility called <code>dfu-util</code>, it should be already installed from section [http://www.gctronic.com/doc/index.php?title=e-puck2#Installing_the_dependencies_for_firmwares_updates Installing the dependencies for firmwares updates].<br/>
To uplaod the firmware, issue the following command: <code>sudo dfu-util -d 0483:df11 -a 0 -s 0x08000000 -D programmer-firmware.bin</code>
===Windows===
Start the <code>DfuSe</code> application (previously installed from section [http://www.gctronic.com/doc/index.php?title=e-puck2#Installing_the_dependencies_for_firmwares_updates Installing the dependencies for firmwares updates]). The programmer in DFU mode will be automatically detected as shown in figure 1. Then you need to open the compiled firmware by clicking on <code>choose</code> and then locating the file with <code>dfu</code> extension,  as shown in figure 2. Now click on the <code>upgrade</code> button, a warning message will be shown, confirm the action by clicking on <code>yes</code> as shown in figure 3. If all is ok you'll be prompted with a message saying that the upgrade was successfull as shown in figure 4.<br/>
<span class="plainlinks">
<table>
<tr>
<td align="center">[1]</td>
<td align="center">[2]</td>
<td align="center">[3]</td>
<td align="center">[4]</td>
</tr>
<tr>
<td>[http://projects.gctronic.com/epuck2/wiki_images/dfu1.png <img width=250 src="http://projects.gctronic.com/epuck2/wiki_images/dfu1.png">]</td>
<td>[http://projects.gctronic.com/epuck2/wiki_images/dfu2.png <img width=250 src="http://projects.gctronic.com/epuck2/wiki_images/dfu2.png">]</td>
<td>[http://projects.gctronic.com/epuck2/wiki_images/dfu3.png <img width=250 src="http://projects.gctronic.com/epuck2/wiki_images/dfu3.png">]</td>
<td>[http://projects.gctronic.com/epuck2/wiki_images/dfu4.png <img width=250 src="http://projects.gctronic.com/epuck2/wiki_images/dfu4.png">]</td>
</tr>
</table>
</span><br/>
==Development==
The programmer code shouldn't be modified, but if you know what you're doing then refer to section [http://www.gctronic.com/doc/index.php?title=e-puck2_programmer_development Programmer development].

Revision as of 04:52, 27 August 2018

Hardware

Overview


The following figures show the main components offered by the e-puck2 robot and where they are physically placed:

Specifications

The e-puck2 robot maintains full compatibility with its predecessor e-puck (e-puck HWRev 1.3 is considered in the following table):

Feature e-puck1.3 e-puck2 Compatibility Additional
Size, weight 70 mm diameter, 55 mm height, 150 g Same form factor: 70 mm diameter, 45 mm, 130 g No e-jumper required
Battery, autonomy LiIPo rechargeable battery (external charger), 1800 mAh.
About 3 hours autonomy. Recharging time about 2-3h.
Same battery; USB charging, recharging time about 2.5h. USB charging
Processor 16-bit dsPIC30F6014A @ 60MHz (15 MIPS), DSP core for signal processing 32-bit STM32F407 @ 168 MHz (210 DMIPS), DSP and FPU, DMA ~10 times faster
Memory RAM: 8 KB; Flash: 144 KB RAM: 192 KB; Flash: 1024 KB RAM: 24x more capable
Flash:~7x more capable
Motors 2 stepper motors with a 50:1 reduction gear; 20 steps per revolution; about 0.13 mm resolution Same motors
Wheels Wheels diamater = 41 mm
Distance between wheels = 53 mm
Same wheels
Speed Max: 1000 steps/s (about 12.9 cm/s) Max: 1200 steps/s (about 15.4 cm/s) 20% faster
Mechanical structure Transparent plastic body supporting PCBs, battery and motors Same mechanics
Distance sensor 8 infra-red sensors measuring ambient light and proximity of objects up to 6 cm Same infra-red sensors
Front real distance sensor, Time of fight (ToF), up to 2 meter.
ToF sensor
IMU 3D accelerometer and 3D gyro 3D accelerometer, 3D gyro, 3D magnetometer 3D magnetometer
Camera VGA color camera; typical use: 52x39 or 480x1 Same camera; typical use: 160x120 Bigger images handling
Audio 3 omni-directional microphones for sound localization
speaker capable of playing WAV or tone sounds
4 omni-directional microhpones (digital) for sound localization
speaker capable of playing WAV or tone sounds
+1 front microphone
LEDs 8 red LEDs around the robot, green body light, 1 strong red LED in front 4 red LEDs and 4 RGB LEDs around the robot, green light, 1 strong red LED in front 4x RGB LEDs
Communication RS232 and Bluetooth 2.0 for connection and programming USB Full-speed, Bluetooth 2.0, BLE, WiFi WiFi, BLE
Storage Not available Micro SD slot Micro SD
Remote Control Infra-red receiver for standard remote control commands Same receiver
Switch / selector 16 position rotating switch Same selector
Extensions Ground sensors, range and bearing, RGB panel, Gumstix extension, omnivision, your own All extension supported
Programming Free C compiler and IDE, Webots simulator, external debugger Free C compiler and IDE, Webots simulator, onboard debugger (GDB) Onboard debugger

This is the overall communication schema:

Documentation

Migrating from e-puck1.x to e-puck2

The e-puck2 robot maintains full compatibility with its predecessor e-puck, but there are some improvements that you should be aware of.

First of all the e-jumper, that is the small board that is attached on top of the e-puck1.x, isn't anymore needed in the e-puck2. The components available on the e-jumper are integrated directly in the robot board. On top of the e-puck2 you'll see a quite big free connector, this is used to attach the extensions board designed for the e-puck1.x that are fully compatible with the e-puck2; you must not connect the e-jumper in this connector.

Secondly you don't need anymore to unplug and plugin the battery for charging, but instead you can charge the battery (up to 1 ampere) directly by connecting the USB cable. If you want you can still charge the battery with the e-puck1.x external charger, in case you have more than one battery.

Moreover you don't need anymore a special serial cable (with probably an RS232 to USB adapter) to be able to communicate with the robot, but you can use the USB cable. Once connected to the computer a serial port will be available that you can use to easily exchange data with the robot.

Extensions

All the extensions (ground sensors, range and bearing, RGB panel, gumstix and omnvision) are supported by the e-puck2 robot, this means that if you have some extensions for the e-puck1.x you can still use them also with e-puck2.
For more information about using the gumstix extension with e-puck2 robot refer to http://www.gctronic.com/doc/index.php?title=Overo_Extension#e-puck2.

Getting Started

The e-puck2 robot features 3 chips onboard:

  • the main microcontroller, that is responsible for handling the sensors and actuators and which runs also the demos/algorithms
  • the programmer, that provides programming/debugging capabilties and moreover it configures the USB hub and is responsible for the power management (on/off of the robot and battery measure)
  • radio module, that is responsible for handling the wireless communication (WiFi, BLE, BT), the RGB LEDs and the user button (the RGB LEDs and button are connected to the radio module due to the pin number limitation on the main microcontroller)

The robot is shipped with the last firmware version programmed on all 3 chips, so you can immediately start using the robot.
The following sections explain the basic usage of the robot, all the users should read this chapter completely in order to have a minimal working system ready to play with the e-puck2 robot. Some sections will have more detailed information that can be read by following the links provided.

When required, dedicated informations are given for all platforms (Windows, Linux, Mac). The commands given for Linux are related to the Ubuntu distribution, similar commands are available in other distributions.

Turn on/off the robot

To turn on the robot you need to press the power button (blue button) placed on the bottom side of the board, near the speaker, as shown in the following figures:


To turn off the robot you need to press the power button for 1 second.

Meaning of the LEDs

The e-puck2 has three groups of LEDs that are not controllable by the user.


Top view of the e-puck2
  • Charger: RED if charging, GREEN if charge complete and RED and GREEN if an error occurs
  • USB: Turned ON if the e-puck2 detects a USB connection with a computer
  • STATUS: Turned ON if the robot is ON and OFF if the robot is OFF. When ON, gives an indication of the level of the battery. Also blinks GREEN if the program is running during a debug session.

Battery level indications (STATUS RGB LED):

  • GREEN if the system's tension is greater than 3.5V
  • ORANGE if the system's tension is between 3.5V and 3.4V
  • RED if the system's tension is between 3.4V and 3.3V
  • RED blinking if the system's tension is below 3.3V

The robot is automatically turned OFF if the system's tension gets below 3.2V during 10 seconds.

Connecting the USB cable

A micro USB cable (included with the robot in the package) is needed to connect the robot to the computer. There are two connectors, one placed on top of the robot facing upwards and the other placed on the side of the robot, as shown in the following figures. Both can be used to charge the robot (up to 1 ampere) or to communicate with it, but do not connect two cables at the same time. Connect the USB cable where is more comfortable to you.


Installing the USB drivers

The USB drivers must be installed only for the users of a Windows version older than Windows 10:

  1. Download and open zadig-2.3.exe
  2. Connect the e-puck2 with the USB cable and turn it on. Three unknown devices appear in the device list of the program, namely e-puck2 STM32F407, e-puck2 GDB Server (Interface 0) and e-puck2 Serial Monitor (Interface 2).
  3. For each of the three devices mentioned above, select the USB Serial (CDC) driver and click on the Install Driver button to install it. Accept the different prompts which may appear during the process. At the end you can simply quit the program and the drivers are installed. These steps are illustrated on Figure 3 below.
Note : The drivers installed are located in C:\Users\"your_user_name"\usb_driver

Example of driver installation for e-puck2 STM32F407

The drivers are automatically installed with Windows 10, Linux and Mac OS.

Anyway in Linux in order to access the serial ports, a little configuration is needed. Type the following command in a terminal session: sudo adduser $USER dialout. Once done, you need to log off to let the change take effect.

Finding the USB serial ports used

Two ports are created by the e-puck2's programmer when the USB cable is connected to the robot (even if the robot is turned off):

  • e-puck2 GDB Server. The port used to program and debug the e-puck2.
  • e-puck2 Serial Monitor. Serial communication between the PC and the radio module (used also to program the radio module).

A third port could be available depending on the code inside the e-puck2's microcontroller. With the factory firmware a port named e-puck2 STM32F407 is created.

Windows

  1. Open the Device Manager
  2. Under Ports (COM & LPT) you can see the virtual ports connected to your computer.
  3. Do a Right-click -> properties on the COM port you want to identify.
  4. Go under the details tab and select Bus reported device description in the properties list.
  5. The name of the port should be written in the text box below.
  6. Once you found the desired device, you can simply look at its port number (COMX).

Linux

1. Open a terminal window (ctrl+alt+t) and enter the following command: ls /dev/ttyACM*
2. Look for ttyACM0 and ttyACM1 in the generated list, which are respectively e-puck2 GDB Server and e-puck2 Serial Monitor. ttyACM2 will be also available with the factory firmware, that is related to e-puck2 STM32F407 port

Note : Virtual serial port numbering on Linux depends on the connections order, thus it can be different if another device using virtual serial ports is already connected to your computer before connecting the robot, but the sequence remains the same.

Mac

1. Open a terminal window and enter the following command: ls /dev/cu.usbmodem*
2. Look for two cu.usbmodemXXXX, where XXXX is the number attributed by your computer. You should find two names, with a numbering near to each other, which are respectively e-puck2 GDB Server (lower number) and e-puck2 Serial Monitor (higher number). A third device cu.usbmodemXXXX will be available with the factory firmware, that is related to e-puck2 STM32F407 port

Note : Virtual serial port numbering on Mac depends on the physical USB port used and the device. If you want to keep the same names, you must connect to the same USB port each time.

PC interface


A PC application was developed to start playing with the robot: you can have information about all the sensors, receive camera images and control the leds and motors.
Beware that it's not mandatory to download this application in order to work with the robot, but it is a nice demo that gives you an overview of all the sensors and actuators available on the robot, this is a first step to gain confidence with the robot.

With the factory firmwares programmed in the robot, place the selector in position 8, attach the USB cable and turn on the robot. Enter the correct port (the one related to e-puck2 STM32F407) in the interface and click connect.

The source code is available from the repository https://github.com/e-puck2/monitor.

Available executables

On Linux remember to apply the configuration explained in the chapter Installing the USB drivers in order to access the serial port.

Installing the dependencies for firmwares updates

You can update the firmware for all 3 chips: the main microcontroller, the radio module and the programmer. For doing that, you need some tools to be installed on the system.

Windows

To upload a new firmware in the microcontroller or in the radio module, you don't need to install anything, the packages provided include all the dependencies.

To upload a new firmware in the programmer you need to install an application called DfuSe released by STMicroelectronics. You can download it from DfuSe_V3.0.5.zip.

Linux

To upload a new firmware in the microcontroller or in the radio module, you need:

  • Python (>= 3.4): sudo apt-get install python3
  • Python pip: sudo apt-get install -y python3-pip
  • pySerial (>= 2.5): sudo pip3 install pyserial

To upload a new firmware in the programmer you need:

  • dfu-util: sudo apt-get install dfu-util

Mac

Install the Homewbrew package manager by opening a terminal and issueing:
/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"
and then:
brew upgrade

To upload a new firmware in the microcontroller or in the radio module, you need:

  • Python (>= 3.4): brew install python (it will install also pip)
  • pySerial (>= 2.5): pip3 install pyserial

To upload a new firmware in the programmer you need:

  • dfu-util: brew install dfu-util

PC side development

This section is dedicated to the users that develop algorithms on the PC side and interact with the robot remotely through a predefined communication protocol. These users don't modify the firmware of the robot, but instead they use the factory firmware released with the robot. They update the robot firmware only when there is an official update.
The remote control of the robot, by receiving sensors values and setting the actuators, is done through the following channels: Bluetooth, Bluetooth Low Energy, WiFi, USB cable.
Examples of tools/environment used by these users:

  1. Aseba
  2. Simulator (e.g. Webots)
  3. ROS
  4. iOS, Android apps
  5. Custom PC application
  6. IoT (e.g. IFTTT)

If you fall into this category, then follow this section for more information: PC side development.

Main microcontroller

The e-puck2 robot main microcontroller is a 32-bit STM32F407 that runs at 168 MHz (210 DMIPS) and include DSP, FPU and DMA capabilities. The version chosen for the e-puck2 has 192 KB of total RAM and 1024 KB of flash, so there is a lot of memory to work with.
This chip is responsible for handling the sensors and actuators and runs also the demos and algorithms.

Factory firmware

The main microcontroller of the robot is initially programmed with a firmware that includes many demos that could be started based on the selector position, here is a list of the demos with related position and a small description:

  • Selector position 0: Aseba
  • Selector position 1: Shell
  • Selector position 2: Read proximity sensors
  • Selector position 3: Asercom protocol v2 (BT)
  • Selector positoin 4: Range and bearing extension (receiver)
  • Selector position 5: Range and bearing extension (transmitter)
  • Selector position 6: ESP32 UART communication test
  • Selector position 7: ...
  • Selector position 8: Asercom protocol v2 (USB)
  • Selector position 9: Asercom protocol (BT)
  • Selector position 10: This position is used to work with the gumstix extension.
  • Selector position 11: Simple obstacle avoidance + some animation
  • Selector position 12: Hardware test
  • Selector position 13: LEDs reflect orientation of the robot
  • Selector position 14: Read magnetometer sensor
  • Selector position 15: ...

The pre-built firmware is available here main microcontroller factory firmware (27.08.18).

Firmware update

Now and then there could be an official firmware update for the robot and it's important to keep the robot updated with the last firmware to get possibile new features, improvements and for bug fixes.
The onboard programmer run a GDB server, so we use GDB commands to upload a new firmware, for this reason a toolchain is needed to upload a new firmware to the robot.
The following steps explain how to update the main microcontroller firmware:
1. Download the package containing the required toolchain and script to program the robot: Windows, Linux 32 bits/64 bits, Mac OS
2. Download the last version of the main microcontroller factory firmware (27.08.18), or use your custom firmware
3. Extract the package and put the firmware file (with elf extension) inside the package directory; beware that only one elf file must be present inside this directory
4. Attach the USB cable and turn on the robot
5. Run the script from the package directory:

Windows: double click program.bat
Linux/Mac: issue the following command in a terminal ./program.sh. If you get permission errors, then issue sudo chmod +x program.sh to let the script be executable.

When the upload is complete you'll see an output like in the following figure:

The final lines should contain the entry ".data",, this means that the upload was successfull. You can then close the terminal window if it is still open.

If you encounter some problem, try to unplug and plug again the USB cable and power cycle the robot, then retry.

Robot side development

If you are an embedded developer and are brave enough, then you have complete access to the source code running on the robot, so you can discover what happen inside the main microcontroller and modify it to accomodate your needs. Normally the users that fall into this category develop algorithms optimized to run directly on the microcontroller, such as:

  1. onboard image processing
  2. swarm algorithms
  3. fully autonomous behaviors
  4. ...

For more information about programming the robot itself, refer to section Robot side development

Radio module

The radio module chosen for the e-puck is the new ESP32 chip from Espressif, integrating a dual core that run up to 240 MHz, 4 MB of flash and 520 KB of RAM. It supports WiFi standards 802.11 b/g/n (access point mode supported), Bluetooth and Bluetooth LE 4.2. It is the successor of the ESP8266 chip. The following figure shows the various peripherals available on the ESP32:

This chip first of all is responsible for handling the wireless communication, moreover it handles also the RGB LEDs (with PWM) and the user button. The RGB LEDs and button are connected to the radio module due to the pin number limitation on the main microcontroller.

Factory firmware

The radio module of the robot is initially programmed with a firmware that supports Bluetooth communication.
The pre-built firmware is available here radio module factory firmware (23.08.18).

WiFi firmware

At the moment the factory firmware supports only Bluetooth, if you want to work with WiFi you need to program the radio with a dedicated firmware, refer to section PC side development: WiFi.

Firmware update

In order to update the firmware of the ESP32 WiFi module you need to use a python script called esptool provided by Espressif (manufacturer of the chip). This script was modified to work with the e-puck2 robot and is included in the provided package. The following steps explain how to update the radio module firmware:
1. Download the package containing the required tools and script to program the robot: Windows, Linux / Mac
2. Download the last version of the radio module factory firmware (23.08.18), or use your custom firmware. The firmware is composed by 3 files named bootloader.bin, ESP32_E-Puck_2.bin and partitions_singleapp.bin
3. Extract the package and put the firmware files inside the package directory; beware that the name of the .bin files must be the same as indicated in step 2
4. Attach the USB cable and turn on the robot
5. Run the script from the package directory:

Windows: double click program.bat
Linux/Mac: issue the following command in a terminal ./program.sh. If you get permission errors, then issue sudo chmod +x program.sh to let the script be executable.

The upload should last about 10-15 seconds and you'll see the progress as shown in the following figure:

When the upload is complete you'll see that all 3 bin files are uploaded correctly as shown in the following figure:

Sometime you could encounter a timeout error as shown in the following figures; in these cases you need to unplug and plug again the USB cable and power cycle the robot, then you can retry.

Development

Probably, you'll never need to touch the firmware running in the radio module, but in case you need to modify the code or you're simply curious about what is happening at the low level, then refer to the section Radio module development.

Programmer

Factory firmware

The programmer is initially programmed with a firmware based on Black Magic Probe programmer/debugger.
The pre-built firmware is available here programmer-firmware.bin (09.04.18); it is also available in dfu format here programmer-firmware.dfu (09.04.18).

Firmware update

The programmer's microcontroller features a factory bootloader that can be entered by acting on some special pins, the bootloader mode is called DFU (device firmware upgrade). You can enter DFU mode by contacting two pinholes together while inserting the USB cable (no need to turn on the robot). The two pin holes are located near the USB connector of the e-puck2, see the photo below.


Location of the pin holes to put the programmer into DFU

The programmer will be recognized as STM Device in DFU Mode device.

Note for Windows users: the device should be recognized automatically (in all Windows versions), but in case it won't be detected then you need to install a libusbK driver for the DFU device.
Follow the same procedure as explained in section Installing the USB drivers using libusbK driver instead of USB Serial (CDC).

Linux/Mac

In order to update the programmer firmware you need an utility called dfu-util, it should be already installed from section Installing the dependencies for firmwares updates.
To uplaod the firmware, issue the following command: sudo dfu-util -d 0483:df11 -a 0 -s 0x08000000 -D programmer-firmware.bin

Windows

Start the DfuSe application (previously installed from section Installing the dependencies for firmwares updates). The programmer in DFU mode will be automatically detected as shown in figure 1. Then you need to open the compiled firmware by clicking on choose and then locating the file with dfu extension, as shown in figure 2. Now click on the upgrade button, a warning message will be shown, confirm the action by clicking on yes as shown in figure 3. If all is ok you'll be prompted with a message saying that the upgrade was successfull as shown in figure 4.

[1] [2] [3] [4]


Development

The programmer code shouldn't be modified, but if you know what you're doing then refer to section Programmer development.