e-puck2 and e-puck2 PC side development: Difference between pages

From GCtronic wiki
(Difference between pages)
Jump to navigation Jump to search
 
 
Line 1: Line 1:
=Hardware=
[{{fullurl:e-puck2}} e-puck2 main wiki]<br/>
==Overview==
<span class="plainlinks">[http://www.gctronic.com/doc/images/e-puck2-overview.png <img width=500 src="http://www.gctronic.com/doc/images/e-puck2-overview_small.png">]</span>
<span class="plainlinks">[http://projects.gctronic.com/epuck2/wiki_images/e-puck2-features.png <img width=600 src="http://projects.gctronic.com/epuck2/wiki_images/e-puck2-features_small.png">]</span><br/>


The following figures show the main components offered by the e-puck2 robot and where they are physically placed:<br/>
=Robot configuration=
<span class="plainlinks">[http://projects.gctronic.com/epuck2/wiki_images/epuck2-components-position.png <img width=800 src="http://projects.gctronic.com/epuck2/wiki_images/epuck2-components-position_small.png">]</span><br/>
This section explains how to configure the robot based on the communication channel you will use for your developments, thus you need to read only one of the following sections, but it would be better if you spend a bit of time reading them all in order to have a full understanding of the available configurations.


==Specifications==
==USB==
The e-puck2 robot maintains full compatibility with its predecessor e-puck (e-puck HWRev 1.3 is considered in the following table):
The main microcontroller is initially programmed with a firmware that support USB communication.<br/>
{| border="1"
 
|'''Feature'''
If the main microcontroller isn't programmed with the factory firmware or if you want to be sure to have the last firmware on the robot, you need to program it with the last factory firmware by referring to section [http://www.gctronic.com/doc/index.php?title=e-puck2#Firmware_update main microcontroller firmware update].<br/>
|'''e-puck1.3'''
 
|'''e-puck2'''
The radio module can be programmed with either the <code>Bluetooth</code> or the <code>WiFi</code> firmware, both are compatible with USB communication:
|'''Compatibility'''
* Bluetooth: refer to section [http://www.gctronic.com/doc/index.php?title=e-puck2#Firmware_update_2 radio module firmware update]
|'''Additional'''
* WiFi: download the [http://projects.gctronic.com/epuck2/esp32-firmware-wifi_25.02.19_e2f4883.zip radio module wifi firmware (25.02.19)] and then refer to section [http://www.gctronic.com/doc/index.php?title=e-puck2#Firmware_update_2 radio module firmware update]
|-  
 
|Size, weight
When you want to interact with the robot from the computer you need to place the selector in position 8 to work with USB. <br/>
|70 mm diameter, 55 mm height, 150 g
 
|Same form factor: 70 mm diameter, 45 mm, 130 g
Section [http://www.gctronic.com/doc/index.php?title=e-puck2#PC_interface PC interface] gives step by step instructions on how to connect the robot with the computer via USB.<br/>
|style="text-align:center;" | <img width=40 src="http://www.gctronic.com/doc/images/ok.png">
 
|No e-jumper required
Once you tested the connection with the robot and the computer, you can start developing your own application by looking at the details behind the communication protocol. Both USB and Bluetooth communication channels use the same protocol called <code>advanced sercom v2</code>, refer to section [http://www.gctronic.com/doc/index.php?title=e-puck2_PC_side_development#Bluetooth_and_USB_2 Communication protocol: BT and USB] for detailed information about this protocol.<br/>
|-
 
|Battery, autonomy
==Bluetooth==
|LiIPo rechargeable battery (external charger), 1800 mAh. <br/>About 3 hours autonomy. Recharging time about 2-3h.
The main microcontroller and radio module of the robot are initially programmed with firmwares that together support Bluetooth communication.<br/>
|Same battery; USB charging, recharging time about 2.5h.
 
|style="text-align:center;" | <img width=30 src="http://www.gctronic.com/doc/images/plus.png">
If the main microcontroller and radio module aren't programmed with the factory firmware or if you want to be sure to have the last firmwares on the robot, you need to program them with the last factory firmwares:
|USB charging
* for the main microcontroller, refer to section [http://www.gctronic.com/doc/index.php?title=e-puck2#Firmware_update main microcontroller firmware update]
|-
* for the radio module, refer to section [http://www.gctronic.com/doc/index.php?title=e-puck2#Firmware_update_2 radio module firmware update]
|Processor
 
|16-bit dsPIC30F6014A @ 60MHz (15 MIPS), DSP core for signal processing
When you want to interact with the robot from the computer you need to place the selector in position 3 if you want to work with Bluetooth. <br/>
|32-bit STM32F407 @ 168 MHz (210 DMIPS), DSP and FPU, DMA
 
|style="text-align:center;" | <img width=30 src="http://www.gctronic.com/doc/images/plus.png">
Section [http://www.gctronic.com/doc/index.php?title=e-puck2_PC_side_development#Connecting_to_the_Bluetooth Connecting to the Bluetooth] gives step by step instructions on how to accomplish your first Bluetooth connection with the robot.<br/>
|~10 times faster
 
|-
Once you tested the connection with the robot and the computer, you can start developing your own application by looking at the details behind the communication protocol. Both Bluetooth and USB communication channels use the same protocol called <code>advanced sercom v2</code>, refer to section [http://www.gctronic.com/doc/index.php?title=e-puck2_PC_side_development#Bluetooth_and_USB_2 Communication protocol: BT and USB] for detailed information about this protocol.<br/>
|Memory
 
|RAM: 8 KB; Flash: 144 KB
==WiFi==
|RAM: 192 KB; Flash: 1024 KB
For working with the WiFi, the main microcontroller must be programmed with the factory firmware and the radio module must be programmed with a dedicated firmware (not the factory one):
|style="text-align:center;" | <img width=30 src="http://www.gctronic.com/doc/images/plus.png">
* for the main microcontroller, refer to section [http://www.gctronic.com/doc/index.php?title=e-puck2#Firmware_update main microcontroller firmware update]
|RAM: 24x more capable<br/>Flash:~7x more capable
* [http://projects.gctronic.com/epuck2/esp32-firmware-wifi_25.02.19_e2f4883.zip radio module wifi firmware (25.02.19)], for information on how to update the firmware refer to section [http://www.gctronic.com/doc/index.php?title=e-puck2#Firmware_update_2 radio module firmware update]
|-
Put the selector in position 15.<br/>
|Motors
 
|2 stepper motors with a 50:1 reduction gear; 20 steps per revolution; about 0.13 mm resolution
Section [http://www.gctronic.com/doc/index.php?title=e-puck2_PC_side_development#Connecting_to_the_WiFi Connecting to the WiFi] gives step by step instructions on how to accomplish your first WiFi connection with the robot.<br/>
|Same motors
 
|style="text-align:center;" | <img width=40 src="http://www.gctronic.com/doc/images/ok.png">
The communication protocol is described in detail in the section [http://www.gctronic.com/doc/index.php?title=e-puck2_PC_side_development#WiFi_2 Communication protocol: WiFi].<br/>
|
 
|-
=Connecting to the Bluetooth=
|Wheels
 
|Wheels diamater = 41 mm <br/>Distance between wheels = 53 mm
The factory firmware of the radio module creates 3 Bluetooth channels using the RFcomm protocol when the robot is paired with the computer:
|Same wheels
# Channel 1, GDB: port to connect with GDB if the programmer is in mode 1 or 3 (refer to chapter [http://www.gctronic.com/doc/index.php?title=e-puck2_programmer_development#Configuring_the_Programmer.27s_settings Configuring the Programmer's settings] for more information about these modes)
|style="text-align:center;" | <img width=40 src="http://www.gctronic.com/doc/images/ok.png">
# Channel 2, UART: port to connect to the UART port of the main processor
|
# Channel 3, SPI: port to connect to the SPI port of the main processor (not yet implemented. Just do an echo for now)
|-
 
|Speed
By default, the e-puck2 is not visible when you search for it in the Bluetooth utility of your computer.<br>
|Max: 1000 steps/s (about 12.9 cm/s)
'''To make it visible, it is necessary to hold the USER button (also labeled "esp32" on the electronic board) while turning on the robot with the ON/OFF button.'''<br>
|Max: 1200 steps/s (about 15.4 cm/s)
::<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/e-puck2-bt-pair.png <img width=250 src="http://projects.gctronic.com/epuck2/wiki_images/e-puck2-bt-pair-small.png">]</span><br/>
|style="text-align:center;" | <img width=30 src="http://www.gctronic.com/doc/images/plus.png">
Then it will be discoverable and you will be able to pair with it.<br>
|20% faster
Note that a prompt could ask you to confirm that the number written on the screen is the same on the e-puck. just ignore this and accept. Otherwise if you are asked for a pin insert 0000.
|-
 
|Mechanical structure
==Windows 7==
|Transparent plastic body supporting PCBs, battery and motors
When you pair your computer with the e-puck2, 3 COM ports will be automatically created.
|Same mechanics
To see which COM port corresponds to which channel you need to open the properties of the paired e-puck2 robot from <code>Bluetooth devices</code>. Then the ports and related channels are listed in the <code>Services</code> tab, as shown in the following figure:<br/>
|style="text-align:center;" | <img width=40 src="http://www.gctronic.com/doc/images/ok.png">
<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/BT-connection-win7.png <img width=300 src="http://projects.gctronic.com/epuck2/wiki_images/BT-connection-win7.png">]</span>
|
 
|-
==Windows 10==
|Distance sensor
When you pair your computer with the e-puck2, 6 COM ports will be automatically created. The three ports you will use have <code>Outgoing</code> direction and are named <code>e_puck2_xxxxx-GDB</code>, <code>e_puck2_xxxxx-UART</code>, <code>e_puck2_xxxxx-SPI</code>. <code>xxxxx</code> is the ID number of your e-puck2.<br/>
|8 infra-red sensors measuring ambient light and proximity of objects up to 6 cm
To see which COM port corresponds to which channel you need to:
|Same infra-red sensors <br/>Front real distance sensor, Time of fight (ToF), up to 2 meter.
# open the Bluetooth devices manager
|style="text-align:center;" | <img width=30 src="http://www.gctronic.com/doc/images/plus.png">
# pair with the robot
|ToF sensor
# click on <code>More Bluetooth options</code>
|-
# the ports and related channels are listed in the <code>COM Ports</code> tab, as shown in the following figure:<br/>
|IMU
:<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/BT-connection-win10.png <img height=300 src="http://projects.gctronic.com/epuck2/wiki_images/BT-connection-win10.png">]</span>
|3D accelerometer and 3D gyro
 
|3D accelerometer, 3D gyro, 3D magnetometer
==Linux==
|style="text-align:center;" | <img width=30 src="http://www.gctronic.com/doc/images/plus.png">
Once paired with the Bluetooth manager, you need to create the port for communicating with the robot by issueing the command: <br/>
|3D magnetometer
<code>sudo rfcomm bind /dev/rfcomm0 MAC_ADDR 2</code><br/>
|-
The MAC address is visible from the Bluetooth manager. The parameter <code>2</code> indicates the channel, in this case a port for the <code>UART</code> channel is created. If you want to connect to another service you need to change this parameter accordingly (e.g. <code>1</code> for <code>GDB</code> and <code>3</code> for <code>SPI</code>). Now you can use <code>/dev/rfcomm0</code> to connect to the robot.
|Camera
 
|VGA color camera; typical use: 52x39 or 480x1
==Mac==
|Same camera; typical use: 160x120
When you pair your computer with the e-puck2, 3 COM ports will be automatically created: <code>/dev/cu.e-puck2_xxxxx-GDB</code>, <code>/dev/cu.e-puck2_xxxxx-UART</code> and <code>/dev/cu.e-puck2_xxxxx-SPI</code>. xxxxx is the ID number of your e-puck2.
|style="text-align:center;" | <img width=40 src="http://www.gctronic.com/doc/images/ok.png">
 
|Bigger images handling
==Testing the Bluetooth connection==
You need to download the PC application provided in section [http://www.gctronic.com/doc/index.php?title=e-puck2#Available_executables PC interface: available executables].<br/>
In the connection textfield you need to enter the UART channel port, for example:
* Windows 7: <code>COM258</code>
* Windows 10: <code>e_puck2_xxxxx-UART</code>
* Linux: <code>/dev/rfcomm0</code>
* Mac: <code>/dev/cu.e-puck2_xxxxx-UART</code>
and then click <code>Connect</code>. <br/>
You should start receiving sensors data and you can send commands to the robot.<br/>
 
Alternatively you can also use a simple terminal program (e.g. <code>realterm</code> in Windows) instead of the PC application, then you can issue manually the commands to receive sensors data or for setting the actuators (once connected, type <code>h + ENTER</code> for a list of availables commands).
 
==Python examples==
Here are some basic Python example that show how to get data from the robot through Bluetooth using the commands available with the <code>advanced sercom v2</code>:
* [http://projects.gctronic.com/epuck2/printhelp.py printhelp.py]: print the list of commands available in the <code>advanced sercom v2</code>
* [http://projects.gctronic.com/epuck2/getprox.py getprox.py]: print the values of the proximity sensors
In both examples you need to set the correct Bluetooth serial port related to the robot.
 
===Connecting to multiple robots===
Here is a simple python script [http://projects.gctronic.com/epuck2/multi-robot.py multi-robot.py] that open a connection with 2 robots and exchange data with them using the [http://www.gctronic.com/doc/index.php/Advanced_sercom_protocol advanced sercom protocol]. This example can be extended to connect to more than 2 robots.
 
==C++ remote library==
A remote control library implemented in C++ is available to control the e-puck2 robot via a Bluetooth connection from the computer.<br/>
The remote control library is multiplatform and uses only standard C++ libraries.<br/>
You can download the library with the command <code>git clone https://github.com/e-puck2/e-puck2_cpp_remote_library</code>.<br/>
A simple example showing how to use the library is also available; you can download it with the command <code>git clone https://github.com/e-puck2/e-puck2_cpp_remote_example</code>.<br/>
Before building the example you need to build the library. Then when building the example, make sure that both the library and the example are in the same directory, that is you must end up with the following directory tree:<br>
: e-puck2_projects
::|_ e-puck2_cpp_remote_library
::|_ e-puck2_cpp_remote_example
The complete API reference is available in the following link [http://projects.gctronic.com/epuck2/e-puck2_cpp_remote_library_api_reference_rev3ac41e3.pdf e-puck2_cpp_remote_library_api_reference.pdf].
 
=Connecting to the WiFi=
The WiFi channel is used to communicate with robot faster than with Bluetooth. At the moment a QQVGA (160x120) color image is transferred to the computer together with the sensors values at about 10 Hz; of course the robot is also able to receive commands from the computer.<br/>
In order to communicate with the robot through WiFi, first you need to configure the network parameters on the robot by connecting directly to it, since the robot is initially configured in access point mode, as explained in the following section. Once the configuration is saved on the robot, it will then connect automatically to the network and you can connect to it.
 
The LED2 is used to indicate the state of the WiFi connection:
* red indicates that the robot is in ''access point mode'' (waiting for configuration)
* green indicates that the robot is connected to a network and has received an IP address
* blue (toggling) indicates that the robot is transferring the image to the computer
* off when the robot cannot connect to the saved configuration
::<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/e-puck2-wifi-led.png <img width=250 src="http://projects.gctronic.com/epuck2/wiki_images/e-puck2-wifi-led-small.png">]</span><br/>
 
==Network configuration==
If there is no WiFi configuration saved in flash, then the robot will be in ''access point mode'' in order to let the user connect to it and setup a WiFi connection. The LED2 is red.
 
The access point SSID will be <code>e-puck2_0XXXX</code> where <code>XXXX</code> is the id of the robot; the password to connect to the access point is <code>e-puck2robot</code>.<br/>
You can use a phone, a tablet or a computer to connect to the robot's WiFi and then you need to open a browser and insert the address <code>192.168.1.1</code>. The available networks are scanned automatically and listed in the browser page as shown in ''figure 1''. Choose the WiFi signal you want the robot to establish a conection with from the web generated list, and enter the related password; if the password is correct you'll get a message saying that the connection is established as shown in ''figure 2''. After pressing <code>OK</code> you will be redirected to the main page showing the network to which you're connected and the others available nearby as shown in ''figure 3''. If you press on the connected network, then you can see your IP address as shown in ''figure 4''; <b>take note of the address since it will be needed later</b>.<br/>
 
<span class="plainlinks">
<table>
<tr>
<td align="center">[1]</td>
<td align="center">[2]</td>
<td align="center">[3]</td>
<td align="center">[4]</td>
</tr>
<tr>
<td>[http://projects.gctronic.com/epuck2/wiki_images/esp32-wifi-setup1.png <img width=150 src="http://projects.gctronic.com/epuck2/wiki_images/esp32-wifi-setup1.png">]</td>
<td>[http://projects.gctronic.com/epuck2/wiki_images/esp32-wifi-setup2.png <img width=150 src="http://projects.gctronic.com/epuck2/wiki_images/esp32-wifi-setup2.png">]</td>
<td>[http://projects.gctronic.com/epuck2/wiki_images/esp32-wifi-setup3.png <img width=150 src="http://projects.gctronic.com/epuck2/wiki_images/esp32-wifi-setup3.png">]</td>
<td>[http://projects.gctronic.com/epuck2/wiki_images/esp32-wifi-setup4.png <img width=150 src="http://projects.gctronic.com/epuck2/wiki_images/esp32-wifi-setup4.png">]</td>
</tr>
</table>
</span><br/>
Now the configuration is saved in flash, this means that when the robot is turned on it will read this configuration and try to establish a connection automatically.<br/>
Remember that you need to power cycle the robot at least once for the new configuration to be active.<br/>
 
Once the connection is established, the LED2 will be green.<br/>
 
In order to reset the current configuration you need to press the user button for 2 seconds (the LED2 red will turn on), then you need to power cycle the robot to enter ''access point mode''.
::<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/e-puck2-wifi-reset.png <img width=250 src="http://projects.gctronic.com/epuck2/wiki_images/e-puck2-wifi-reset-small.png">]</span><br/>
 
==Finding the IP address==
Often the IP address assigned to the robot will remain the same when connecting to the same network, so if you took note of the IP address in section [http://www.gctronic.com/doc/index.php?title=e-puck2#Network_configuration Network configuration] you're ready to go to the next section. <br/>
 
Otherwise you need to connect the robot to the computer with the USB cable, open a terminal and connect to the port labeled <code>Serial Monitor</code> (see chapter [http://www.gctronic.com/doc/index.php?title=e-puck2#Finding_the_USB_serial_ports_used Finding the USB serial ports used]). Then power cycle the robot and the IP address will be shown in the terminal (together with others informations), as illustrated in the following figure:<br/>
<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/esp32-wifi-setup5.png <img width=500 src="http://projects.gctronic.com/epuck2/wiki_images/esp32-wifi-setup5.png">]</span>
 
==Testing the WiFi connection==
A dedicated WiFi version of the PC application was developed to communicate with the robot through TCP protocol. You can download the executable from one of the following links:
* [http://projects.gctronic.com/epuck2/monitor_wifi_27dddd4.zip Windows executable - WiFi]
* Mac (not available yet)
* [http://projects.gctronic.com/epuck2/monitor_wifi_linux64bit_27dddd4.tar.gz Ubuntu 14.04 (or later) - 64 bit]
 
If you are interested to the source code, you can download it with the command <code>git clone -b wifi --recursive https://github.com/e-puck2/monitor.git</code><br/>
 
Run the PC application, insert the IP address of the robot in the connection textfield and then click on the <code>Connect</code> button. You should start receiving sensors data and you can send commands to the robot. The LED2 blue will toggle.<br/>
 
==Web server==
When the robot is in ''access point mode'' you can have access to a web page showing the camera image and some buttons that you can use to move the robot; it is a basic example that you can use as a starting point to develop your own web browser interface.<br/>
You can use a phone, a tablet or a computer to connect to the robot's WiFi and then you need to open a browser and insert the address <code>192.168.1.1/monitor.html</code>.
 
==Python examples==
Here are some basic Python example that show how to get data from the robot through Bluetooth using the commands available with the <code>advanced sercom v2</code>:
* [http://projects.gctronic.com/epuck2/printhelp.py printhelp.py]: print the list of commands available in the <code>advanced sercom v2</code>
* [http://projects.gctronic.com/epuck2/getprox.py getprox.py]: print the values of the proximity sensors
In both examples you need to set the correct Bluetooth serial port related to the robot.
 
===Connecting to multiple robots===
Here is a simple python script [http://projects.gctronic.com/epuck2/multi-robot.py multi-robot.py] that open a connection with 2 robots and exchange data with them using the [http://www.gctronic.com/doc/index.php/Advanced_sercom_protocol advanced sercom protocol]. This example can be extended to connect to more than 2 robots.
 
=Communication protocol=
This section is the hardest part to understand. It outlines all the details about the communication protocols that you'll need to implement in order to communicate with the robot form the computer. So spend a bit of time reading and re-reading this section in order to grasp completely all the details.
 
==Bluetooth and USB==
The communication protocol is based on the [http://www.gctronic.com/doc/index.php/Advanced_sercom_protocol advanced sercom protocol], used with the e-puck1.x robot. The <code>advanced sercom v2</code> includes all the commands available in the <code>advanced sercom</code> protocol and add some additional commands to handle the new features of the e-puck2 robot. In particular here are the new commands:
{| border="1" cellpadding="10" cellspacing="0"
!Command
!Description
!Return value / set value
|-
|-
|Audio
|<code>0x08</code>
|3 omni-directional microphones for sound localization<br/>speaker capable of playing WAV or tone sounds
|Get all sensors
|4 omni-directional microhpones (digital) for sound localization<br/>speaker capable of playing WAV or tone sounds
|see section [http://www.gctronic.com/doc/index.php?title=e-puck2_PC_side_development#WiFi_2 Communication protocol: WiFi]
|style="text-align:center;" | <img width=30 src="http://www.gctronic.com/doc/images/plus.png">
| +1 front microphone
|-
|-
|LEDs
|<code>0x09</code>
|8 red LEDs around the robot, green body light, 1 strong red LED in front
|Set all actuators
|4 red LEDs and 4 RGB LEDs around the robot, green light, 1 strong red LED in front
|see section [http://www.gctronic.com/doc/index.php?title=e-puck2_PC_side_development#WiFi_2 Communication protocol: WiFi]
|style="text-align:center;" | <img width=30 src="http://www.gctronic.com/doc/images/plus.png">
|4x RGB LEDs
|-
|-
|Communication
|<code>0x0A</code>
|RS232 and Bluetooth 2.0 for connection and programming
|Set RGB LEDs, values from 0 (off) to 100 (completely on)
|USB Full-speed, Bluetooth 2.0, BLE, WiFi
|<code>[LED2_red][LED2_blue][LED2_green][LED4_red][LED4_blue][LED4_green][LED6_red][LED6_blue][LED6_green][LED8_red][LED8_blue][LED8_green]</code>
|style="text-align:center;" | <img width=30 src="http://www.gctronic.com/doc/images/plus.png">
|WiFi, BLE
|-
|-
|Storage
|<code>0x0B</code>
|Not available
|Get button state: 0 = not pressed, 1 = pressed
|Micro SD slot
|<code>[STATE]</code>
|style="text-align:center;" | <img width=30 src="http://www.gctronic.com/doc/images/plus.png">
|Micro SD
|-
|-
|Remote Control
|<code>0x0C</code>
|Infra-red receiver for standard remote control commands
|Get all 4 microphones volumes
|Same receiver
|<code>[MIC0_LSB][MIC0_MSB][MIC1_LSB][MIC1_MSB][MIC2_LSB][MIC2_MSB][MIC3_LSB][MIC3_MSB]</code>
|style="text-align:center;" | <img width=40 src="http://www.gctronic.com/doc/images/ok.png">
|
|-
|-
|Switch / selector
|<code>0x0D</code>
|16 position rotating switch
|Get distance from ToF sensor (millimeters)
|Same selector
|<code>[DIST_LSB][DIST_MSB]</code>
|style="text-align:center;" | <img width=40 src="http://www.gctronic.com/doc/images/ok.png">
|
|-
|-
|Extensions
|<code>0x0E</code>
|Ground sensors, range and bearing, RGB panel, Gumstix extension, omnivision, your own
|Get SD state: 0 = micro sd not connected, 1 = micro sd connected
|All extension supported
|<code>[STATE]</code>
|style="text-align:center;" | <img width=40 src="http://www.gctronic.com/doc/images/ok.png">
|
|-
|Programming
|Free C compiler and IDE, Webots simulator, external debugger
|Free C compiler and IDE, Webots simulator, onboard debugger (GDB)
|style="text-align:center;" | <img width=30 src="http://www.gctronic.com/doc/images/plus.png">
|Onboard debugger
|}
|}


This is the overall communication schema:<br/>
==WiFi==
<span class="plainlinks">[http://www.gctronic.com/doc/images/comm-overall-e-puck2E.jpg <img width=700 src="http://www.gctronic.com/doc/images/comm-overall-e-puck2E.jpg">]</span><br/>
The communication is based on TCP; the robot create a TCP server and wait for a connection.<br/>
 
Each packet is identified by an ID (1 byte). The following IDs are used to send data from the robot to the computer:
* 0x00 = reserved
* 0x01 = QQVGA color image packet (only the first segment includes this id); packet size (without id) = 38400 bytes; image format = RGB565
* 0x02 = sensors packet; packet size (without id) = 104 bytes; the format of the returned values are based on the [http://www.gctronic.com/doc/index.php/Advanced_sercom_protocol advanced sercom protocol] and are compatible with e-puck1.x:
 
:<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/packet-format-robot-to-pc.jpg <img width=1150 src="http://projects.gctronic.com/epuck2/wiki_images/packet-format-robot-to-pc.jpg">]</span><br/>
:*Acc: raw axes values, between -1500 and 1500, resolution is +-2g
:*Acceleration: acceleration magnitude <img width=70 src="http://projects.gctronic.com/epuck2/wiki_images/3dvector-magnitude.png">, between 0.0 and about 2600.0 (~3.46 g)
:*Orientation: between 0.0 and 360.0 degrees <table><tr><td align="center">0.0 deg</td><td align="center">90.0 deg</td><td align="center">180 deg</td><td align="center">270 deg</td></tr><tr><td><img width=80 src="http://projects.gctronic.com/epuck2/wiki_images/orientation0.png"></td><td><img width=80 src="http://projects.gctronic.com/epuck2/wiki_images/orientation90.png"></td><td><img width=80 src="http://projects.gctronic.com/epuck2/wiki_images/orientation180.png"></td><td><img width=80 src="http://projects.gctronic.com/epuck2/wiki_images/orientation270.png"></td></tr></table>
 
:*Inclination: between 0.0 and 90.0 degrees (when tilted in any direction)<table><tr><td align="center">0.0 deg</td><td align="center">90.0 deg</td></tr><tr><td><img width=80 src="http://projects.gctronic.com/epuck2/wiki_images/inclination0.png"></td><td><img width=80 src="http://projects.gctronic.com/epuck2/wiki_images/inclination90.png"></td></tr></table>
:*Gyro: raw axes values, between -32768 and 32767, range is +-250dps
:*Magnetometer: raw axes values expressed in float, range is +-4912.0 uT (magnetic flux density expressed in micro Tesla)
:*Temp: temperature given in Celsius degrees
:*IR proximity: between 0 (no objects detected) and 4095 (object near the sensor)
:*IR ambient: between 0 (strong light) and 4095 (dark)
:*ToF distance: distance given in millimeters
:*Mic volume: between 0 and 4095
:*Motors steps: 1000 steps per wheel revolution
:*Battery:
:*uSD state: 1 if the micro sd is present and can be read/write, 0 otherwise
:*TV remote data: RC5 protocol
:*Selector position: between 0 and 15
:*Ground proximity: between 0 (no surface at all or not reflective surface e.g. black) and 1023 (very reflective surface e.g. white)
:*Ground ambient: between 0 (strong light) and 1023 (dark)
:*Button state: 1 button pressed, 0 button released
* 0x03 = empty packet (only id is sent); this is used as an acknowledgment for the commands packet when no sensors and no image is requested
The following IDs are used to send data from the computer to the robot:
* 0x80 = commands packet; packet size (without id) = 20 bytes:
 
:<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/packet-format-pc-to-robot.jpg <img width=600 src="http://projects.gctronic.com/epuck2/wiki_images/packet-format-pc-to-robot.jpg">]</span><br/>
 
:*request:
:** bit0: 0=stop image stream; 1=start image stream
:** bit1: 0=stop sensors stream; 1=start sensors stream
:*settings:
:** bit0: 1=calibrate IR proximity sensors
:** bit1: 0=disable onboard obstacle avoidance; 1=enable onboard obstacle avoidance (not implemented yet)
:** bit2: 0=set motors speed; 1=set motors steps (position)
:*left and right: when bit2 of <code>settings</code> field is <code>0</code>, then this is the desired motors speed (-1000..1000); when <code>1</code> then this is the value that will be set as motors position (steps)
:*LEDs: 0=off; 1=on
:** bit0: 0=LED1 off; 1=LED1 on
:** bit1: 0=LED3 off; 1=LED3 on
:** bit2: 0=LED5 off; 1=LED5 on
:** bit3: 0=LED7 off; 1=LED7 on
:** bit4: 0=body LED off; 1=body LED on
:** bit5: 0=front LED off; 1=front LED on
:*RGB LEDs: for each LED, it is specified in sequence the value of red, green and blue (0...100)
:* sound id: 0x01=MARIO, 0x02=UNDERWOLRD, 0x04=STARWARS, 0x08=4KHz, 0x10=10KHz, 0x20=stop sound
 
For example to receive the camera image (stream) the following steps need to be followed:<br/>
1) connect to the robot through TCP<br/>
2) send the command packet:
:{| border="1"
|0x80
|0x01
|0x00
|0x00
|0x00
|0x00
|0x00
|0x00
|0x00
|0x00
|0x00
|0x00
|0x00
|0x00
|0x00
|0x00
|0x00
|0x00
|0x00
|0x00
|0x00
|}
3) read the ID (1 byte) and the QQVGA color image pakcet (38400 bytes)<br/>
4) go to step 3


==Documentation==
=Webots=
* '''Main microcontroller''': STM32F407, [http://projects.gctronic.com/epuck2/doc/STM32F407xx_datasheet.pdf datasheet], [http://projects.gctronic.com/epuck2/doc/STM32F407_reference-manual.pdf reference-manual]
TBD
* '''Programmer/debugger''': STM32F413, [http://projects.gctronic.com/epuck2/doc/STM32F413x_datasheet.pdf datasheet], [http://projects.gctronic.com/epuck2/doc/STM32F413_reference-manual.pdf reference-manual]
* '''Radio module''': Espressif ESP32, [http://projects.gctronic.com/epuck2/doc/esp32_datasheet_en.pdf datasheet], [http://projects.gctronic.com/epuck2/doc/esp32_technical_reference_manual_en.pdf reference-manual]
* '''Camera''': PixelPlus PO8030D CMOS image sensor, [http://projects.gctronic.com/E-Puck/docs/Camera/PO8030D.pdf datasheet], no IR cut filter
* '''Microphones''': STM-MP45DT02, [http://projects.gctronic.com/epuck2/doc/mp45dt02.pdf datasheet]
* '''Optical sensors''': Vishay Semiconductors Reflective Optical Sensor, [http://projects.gctronic.com/epuck2/doc/tcrt1000.pdf datasheet]
* '''ToF distance sensor''': STM-VL53L0X, [http://projects.gctronic.com/epuck2/doc/VL53L0X-Datasheet.pdf datasheet], [http://projects.gctronic.com/epuck2/doc/VL53L0X-UserManual-API.pdf user-manual]
* '''IMU''': InvenSense MPU-9250, [http://projects.gctronic.com/epuck2/doc/MPU-9250-product-specification.pdf product-specification], [http://projects.gctronic.com/epuck2/doc/MPU-9250-Register-Map.pdf register-map]
* '''Motors''': [http://www.e-puck.org/index.php?option=com_content&view=article&id=7&Itemid=9 details]
* '''Speaker''': Diameter 13mm, power 500mW, 8 Ohm, DS-1389 or PSR12N08AK or similar
* '''IR receiver''': TSOP36230


==Migrating from e-puck1.x to e-puck2==
=ROS=
The e-puck2 robot maintains full compatibility with its predecessor e-puck, but there are some improvements that you should be aware of.<br/>
This chapter explains how to use ROS with the e-puck2 robots by connecting them via Bluetooth to the computer that runs the ROS nodes. Basically all the sensors are exposed to ROS and you can also send commands back to the robot through ROS. Both Pyhton and cpp versions are implemented to give the user the possibility to choose its preferred programming language. Here is a general schema:<br/>
<span class="plainlinks">[http://www.gctronic.com/doc/images/epuck-ros-schema.png <img width=450 src="http://www.gctronic.com/doc/images/epuck-ros-schema-small.png">]</span>
''<font size="2">Click to enlarge</font>''<br/>


First of all the e-jumper, that is the small board that is attached on top of the e-puck1.x, isn't anymore needed in the e-puck2. The components available on the e-jumper are integrated directly in the robot board. On top of the e-puck2 you'll see a quite big free connector, this is used to attach the extensions board designed for the e-puck1.x that are fully compatible with the e-puck2; you must not connect the e-jumper in this connector.<br/>
First of all you need to install and configure ROS, refer to [http://wiki.ros.org/Distributions http://wiki.ros.org/Distributions] for more informations. <font style="color:red"> This tutorial is based on ROS Kinetic</font>.


Secondly you don't need anymore to unplug and plugin the battery for charging, but instead you can charge the battery directly by connecting the USB cable. If you want you can still charge the battery with the e-puck1.x external charger, in case you have more than one battery.<br/>
Starting from the work done with the e-puck1 (see [https://www.gctronic.com/doc/index.php?title=E-Puck#ROS E-Puck ROS]), we updated the code in order to support the e-puck2 robot.


Moreover you don't need anymore a special serial cable (with probably an RS232 to USB adapter) to be able to communicate with the robot, but you can use the USB cable. Once connected to the computer a serial port will be available that you can use to easily exchange data with the robot.
==Initial configuration==
The following steps need to be done only once, after installing ROS:
:1. If not already done, create a catkin workspace, refer to [http://wiki.ros.org/catkin/Tutorials/create_a_workspace http://wiki.ros.org/catkin/Tutorials/create_a_workspace]. Basically you need to issue the following commands: 
<pre>  mkdir -p ~/catkin_ws/src
  cd ~/catkin_ws/src
  catkin_init_workspace
  cd ~/catkin_ws/
  catkin_make
  source devel/setup.bash </pre>
:2. You will need to add the line <code>source ~/catkin_ws/devel/setup.bash</code> to your <tt>.bashrc</tt> in order to automatically have access to the ROS commands when the system is started
:3. Move to <code>~/catkin_ws/src</code> and clone the ROS e-puck2 driver repo:
:* if you are working with Python: <code>git clone -b e-puck2 https://github.com/gctronic/epuck_driver</code>
:* if you are working with cpp: <code>git clone -b e-puck2 https://github.com/gctronic/epuck_driver_cpp</code>
:4. Install the dependencies:
:* ROS:
:** [http://wiki.ros.org/gmapping gmapping (SLAM)] package: <code>sudo apt-get install ros-kinetic-gmapping</code>
:* Python:
:** The ROS e-puck2 driver is based on the e-puck2 Python library that requires some dependencies:
:*** install the Python setup tools: <code>sudo apt-get install python-setuptools</code>
:*** install the Python image library: <code>sudo apt-get install python-imaging</code>
:*** install pybluez: <code>sudo pip install pybluez</code>
:**** install pybluez dependencies: <code>sudo apt-get install libbluetooth-dev</code>
:* cpp:
:** install the library used to communicate with Bluetooth: <code>sudo apt-get install libbluetooth-dev</code>
:5. Open a terminal and go to the catkin workspace directory (<tt>~/catkin_ws</tt>) and issue the command <code>catkin_make</code>, there shouldn't be errors
:6. Program the e-puck2 robot with the [https://www.gctronic.com/doc/index.php?title=e-puck2#Factory_firmware factory firmware] and put the selector in position 3


==Extensions==
==Running the Python ROS node==
All the extensions (ground sensors, range and bearing, RGB panel, gumstix and omnvision) are supported by the e-puck2 robot, this means that if you have some extensions for the e-puck1.x you can still use them also with e-puck2.<br/>
First of all get the last version of the ROS e-puck2 driver from github. Move to <code>~/catkin_ws/src</code> and issue: <code>git clone -b e-puck2 https://github.com/gctronic/epuck_driver</code>. <br/>
For more information about using the gumstix extension with e-puck2 robot refer to [http://www.gctronic.com/doc/index.php?title=Overo_Extension#e-puck2 http://www.gctronic.com/doc/index.php?title=Overo_Extension#e-puck2].
Then build the driver by opening a terminal and issueing the command <code>catkin_make</code> from within the catkin workspace directory (e.g. ~/catkin_ws).<br/>
Moreover make sure the node is marked as executable by opening a terminal and issueing the following command from within the catkin workspace directory (e.g. ~/catkin_ws): <code>chmod +x ./src/epuck_driver/scripts/epuck2_driver.py</code>. <br/>


=Getting Started=
Before actually starting the e-puck2 node you need to configure the e-puck2 robot as Bluetooth device in the system, refer to section [https://www.gctronic.com/doc/index.php?title=e-puck2_PC_side_development#Connecting_to_the_Bluetooth Connecting to the Bluetooth].<br/>
The e-puck2 robot features 3 chips onboard:
Once the robot is paired with the computer, you need to take note of its MAC address (this will be needed when launching the ROS node). To know the MAC address of a paired robot, go to <tt>System Settings</tt>, <tt>Bluetooth</tt> and select the robot; once selected you'll see in the right side the related MAC address.
* the main microcontroller, that is responsible for handling the sensors and actuators and which runs also the demos/algorithms
* the programmer, that provides programming/debugging capabilties and moreover it configures the USB hub and is responsible for the power management (on/off of the robot and battery measure)
* radio module, that is responsible for handling the wireless communication (WiFi, BLE, BT), the RGB LEDs and the user button (the RGB LEDs and button are connected to the radio module due to the pin number limitation on the main microcontroller)


The following sections explain the basic usage of the robot, more detailed information can be found following the links provided.
First thing to do before launching the script file is running the <tt>roscore</tt>, open another terminal tab and issue the command <tt>roscore</tt>.


==Turn on/off the robot==
Now you can finally start the e-puck2 ROS node, for this purposes there is a launch script (based on [http://wiki.ros.org/roslaunch roslaunch]).<br/>
To turn on the robot you need to press the power button (blue button) placed on the bottom side of the board, near the speaker, as shown in the following figures:
Open a terminal and issue the following command: <code>roslaunch epuck_driver epuck2_controller.launch epuck2_address:='B4:E6:2D:EB:9C:4F'</code>.<br/>
::<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/e-puck2-btn-on-off2.jpg <img width=250 src="http://projects.gctronic.com/epuck2/wiki_images/e-puck2-btn-on-off2-small.jpg">][http://projects.gctronic.com/epuck2/wiki_images/e-puck2-btn-on-off.jpg <img width=300 src="http://projects.gctronic.com/epuck2/wiki_images/e-puck2-btn-on-off-small.jpg">]</span><br/>
<tt>B4:E6:2D:EB:9C:4F</tt> is the e-puck2 Bluetooth MAC address that need to be changed accordingly to your robot.
To turn off the robot you need to press the power button for 1 second.


==Meaning of the LEDs==
If all is going well you'll see the robot make a blink meaning it is connected and ready to exchange data and [http://wiki.ros.org/rviz/UserGuide rviz] will be opened showing the informations gathered from the topics published by the e-puck2 driver node.
The e-puck2 has three groups of LEDs that are not controllable by the user.


::<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/e-puck2_top_leds.png <img width=250 src="http://projects.gctronic.com/epuck2/wiki_images/e-puck2_top_leds.png">]</span><br/>
The launch script is configured also to run the [http://wiki.ros.org/gmapping gmapping (SLAM)] node that let the robot construct a map of the environment; the map is visualized in real-time directly in the rviz window. The gmapping package provides laser-based SLAM (Simultaneous Localization and Mapping) and since the e-puck2 has no laser sensor, the information from the 6 proximity sensors on the front side of the robot are interpolated to get 19 laser scan points.
::''Top view of the e-puck2''


*Charger: RED if charging, GREEN if charge complete and RED and GREEN if an error occurs
The following graph shows all the topics published by the e-puck2 driver node and the <code>rviz</code> interface: <br/>
*USB: Turned ON if the e-puck2 detects a USB connection with a computer
<span class="plainlinks">[http://projects.gctronic.com/epuck2/wiki_images/e-puck2_topics.png <img width=200 src="http://projects.gctronic.com/epuck2/wiki_images/e-puck2_topics_small.png">]</span>
*STATUS: Turned ON if the robot is ON and OFF if the robot is OFF. When ON, gives an indication of the level of the battery. Also blinks GREEN if the program is running during a debug session.
''<font size="2">Click to enlarge</font>''
<span class="plainlinks">[http://projects.gctronic.com/epuck2/wiki_images/e-puck2-rviz.png <img width=400 src="http://projects.gctronic.com/epuck2/wiki_images/e-puck2-rviz_small.png">]</span>
''<font size="2">Click to enlarge</font>''<br/>


Battery level indications (STATUS RGB LED):
==Running the cpp ROS node==
*GREEN if the system's tension is greater than 3.5V
First of all get the last version of the ROS e-puck2 driver from github. Move to <code>~/catkin_ws/src</code> and issue: <code>git clone -b e-puck2 https://github.com/gctronic/epuck_driver_cpp</code>. <br/>
*ORANGE if the system's tension is between 3.5V and 3.4V
Then build the driver by opening a terminal and issueing the command <code>catkin_make</code> from within the catkin workspace directory (e.g. ~/catkin_ws).<br/>
*RED if the system's tension is between 3.4V and 3.3V
*RED blinking if the system's tension is below 3.3V


The robot is automatically turned OFF if the system's tension gets below 3.2V during 10 seconds.
Before actually starting the e-puck2 node you need to configure the e-puck2 robot as Bluetooth device in the system, refer to section [https://www.gctronic.com/doc/index.php?title=e-puck2_PC_side_development#Connecting_to_the_Bluetooth Connecting to the Bluetooth].<br/>
Once the robot is paired with the computer, you need to take note of its MAC address (this will be needed when launching the ROS node). To know the MAC address of a paired robot, go to <tt>System Settings</tt>, <tt>Bluetooth</tt> and select the robot; once selected you'll see in the right side the related MAC address.


==Connecting the USB cable==
First thing to do before launching the script file is running the <tt>roscore</tt>, open another terminal tab and issue the command <tt>roscore</tt>.
A micro USB cable (included with the robot in the package) is needed to connect the robot to the computer. There are two connectors, one placed on top of the robot facing upwards and the other placed on the side of the robot, as shown in the following figures. Both can be used to charge the robot or to communicate with it (do not connect two cables at the same time), choose the one that is more comfortable to you.
::<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/e-puck2-usb-conn.jpg <img width=250 src="http://projects.gctronic.com/epuck2/wiki_images/e-puck2-usb-conn-small.jpg">][http://projects.gctronic.com/epuck2/wiki_images/e-puck2-usb-conn2.jpg <img width=300 src="http://projects.gctronic.com/epuck2/wiki_images/e-puck2-usb-conn2-small.jpg">]</span><br/>


==Installing the USB drivers==
Now you can finally start the e-puck2 ROS node, for this purposes there is a launch script (based on [http://wiki.ros.org/roslaunch roslaunch]).<br/>
The USB drivers must be installed only for the users of a Windows version older than Windows 10:
Open a terminal and issue the following command: <code>roslaunch epuck_driver_cpp epuck2_controller.launch epuck2_address:='B4:E6:2D:EB:9C:4F'</code>.<br/>
<tt>B4:E6:2D:EB:9C:4F</tt> is the e-puck2 Bluetooth MAC address that need to be changed accordingly to your robot.


#Download and open [http://projects.gctronic.com/epuck2/zadig-2.3.exe zadig-2.3.exe]
If all is going well the robot will be ready to exchange data and [http://wiki.ros.org/rviz/UserGuide rviz] will be opened showing the informations gathered from the topics published by the e-puck2 driver node.
#Connect the e-puck2 with the USB cable and turn it on. Three unknown devices appear in the device list of the program, namely '''e-puck2 STM32F407''', '''e-puck2 GDB Server (Interface 0)''' and '''e-puck2 Serial Monitor (Interface 2)'''.
#For each of the three devices mentioned above, select the <code>USB Serial (CDC)</code> driver and click on the <code>Install Driver</code> button to install it. Accept the different prompts which may appear during the process. At the end you can simply quit the program and the drivers are installed. These steps are illustrated on Figure 3 below.
::Note : The drivers installed are located in <code>C:\Users\"your_user_name"\usb_driver</code>


:<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/Zadig_e-puck2_STM32F407.png <img width=500 src="http://projects.gctronic.com/epuck2/wiki_images/Zadig_e-puck2_STM32F407.png">]</span><br/>
The launch script is configured also to run the [http://wiki.ros.org/gmapping gmapping (SLAM)] node that let the robot construct a map of the environment; the map is visualized in real-time directly in the rviz window. The gmapping package provides laser-based SLAM (Simultaneous Localization and Mapping) and since the e-puck2 has no laser sensor, the information from the 6 proximity sensors on the front side of the robot are interpolated to get 19 laser scan points.
::''Example of driver installation for e-puck2 STM32F407''


The drivers are automatically installed with Windows 10, Linux and Mac OS.
==Move the robot==
You have some options to move the robot.<br/>


Anyway in Linux in order to access the serial ports, a little configuration is needed. Type the following command in a terminal session: <code>sudo adduser $USER dialout</code>. Once done, you need to log off to let the change take effect.
The first one is to use the <code>rviz</code> interface: in the bottom left side of the interface there is a <code>Teleop</code> panel containing an ''interactive square'' meant to be used with differential drive robots. By clicking in this square you'll move the robot, for instance by clicking on the top-right section, then the robot will move forward-right.<br/>


==Finding the USB serial ports used==
The second method to move the robot is using the <code>ros-kinetic-turtlebot-teleop</code> ROS package. If not already done, you can install this package by issueing <code>sudo apt-get install ros-kinetic-turtlebot-teleop</code>.<br/>
Two ports are created by the e-puck2's programmer when the USB cable is connected to the robot (even if the robot is turned off):
There is a lunch file in the e-puck2 ROS driver that configures this package in order to be used with the e-puck2 robot. To start the launch file, issue the following command <code>roslaunch epuck_driver epuck2_teleop.launch</code>, then follow the instructions printed on the terminal to move the robot.<br/>
* '''e-puck2 GDB Server'''. The port used to program and debug the e-puck2.
* '''e-puck2 Serial Monitor'''. Serial communication between the PC and the radio module (used also to program the radio module).


A third port could be available depending on the code inside the e-puck2's microcontroller. With the standard firmware a port named '''e-puck2 STM32F407''' is created.
The third method is by directly publishing on the <code>/mobile_base/cmd_vel</code> topic, for instance by issueing the following command <code>rostopic pub -1 /mobile_base/cmd_vel geometry_msgs/Twist -- '[0.0, 0.0, 0.0]' '[0.0, 0.0, 1.0]'</code> the robot will rotate on the spot, instead by issueing the following command <code>rostopic pub -1 /mobile_base/cmd_vel geometry_msgs/Twist -- '[4.0, 0.0, 0.0]' '[0.0, 0.0, 0.0]'</code> the robot will move straight forward.<br/>
===Windows===
Beware that there shouldn't be any other node publishing on the <code>/mobile_base/cmd_vel</code> topic, otherwise your commands will be overwritten.
#Open the Device Manager
#Under '''Ports (COM & LPT)''' you can see the virtual ports connected to your computer.
#Do a '''Right-click -> properties''' on the COM port you want to identify.
#Go under the '''details''' tab and select '''Bus reported device description''' in the properties list.
#The name of the port should be written in the text box below.
#Once you found the desired device, you can simply look at its port number '''(COMX)'''.


===Linux===
==Control the RGB LEDs==
:1. Open a terminal window (<code>ctrl+alt+t</code>) and enter the following command: <code>ls /dev/ttyACM*</code>
The general command to change the RGB LEDs colors is the following:<br/>
:2. Look for '''ttyACM0''' and '''ttyACM1''' in the generated list, which are respectively '''e-puck2 GDB Server''' and '''e-puck2 Serial Monitor'''.
<code>rostopic pub -1 /mobile_base/rgb_leds std_msgs/UInt8MultiArray "{data: [LED2 red, LED2 green, LED2 blue, LED4 red, LED4 green, LED4 blue, LED6 red, LED6 green, LED6 blue, LED8 red, LED8 green, LED8 blue]}"</code><br/>
Note : Virtual serial port numbering on Linux depends on the connections order, thus it can be different if another device using virtual serial ports is already connected to your computer before connecting the robot.
The values range is from 0 (off) to 100 (completely on). Have a look at the [https://www.gctronic.com/doc/index.php?title=e-puck2#Overview e-puck2 overview] to know the position of the RGB LEDs.<br/>


===Mac===
For instance to set all the RGB LEDs to red, issue the following command:<br/>
:1. Open a terminal window and enter the following command: <code>ls /dev/cu.usbmodem*</code>
<code>rostopic pub -1 /mobile_base/rgb_leds std_msgs/UInt8MultiArray "{data: [100,0,0, 100,0,0, 100,0,0, 100,0,0]}"</code><br/>
:2. Look for two '''cu.usbmodemXXXX''', where XXXX is the number attributed by your computer. You should find two names, with a numbering near to each other, which are respectively '''e-puck2 GDB Server''' and '''e-puck2 Serial Monitor'''.


Note : Virtual serial port numbering on Mac depends on the physical USB port used and the device. If you want to keep the same names, you must connect to the same USB port each time.
To turn off all the RGB LEDs issue the following command:<br/>
<code>rostopic pub -1 /mobile_base/rgb_leds std_msgs/UInt8MultiArray "{data: [0,0,0, 0,0,0, 0,0,0, 0,0,0]}"</code>


==PC interface==
==Control the LEDs==
<span class="plainlinks">[http://projects.gctronic.com/epuck2/wiki_images/monitor.png <img width=250 src="http://projects.gctronic.com/epuck2/wiki_images/monitor_small.png">]<br/>
The general command to change the LEDs state is the following:<br/>
A PC application was developed to start playing with the robot: you can have information about all the sensors, receive camera images and control the leds and motors.<br/>
<code>rostopic pub -1 /mobile_base/cmd_led std_msgs/UInt8MultiArray "{data: [LED1, LED3, LED5, LED7, body LED, front LED]}"</code><br/>
With the standard firmware programmed in the robot, place the selector in position 8, attach the USB cable and turn on the robot. Type the correct port name (the one named in the interface and click <code>connect</code>.
The values are: 0 (off), 1 (on) and 2 (toggle). Have a look at the [https://www.gctronic.com/doc/index.php?title=e-puck2#Overview e-puck2 overview] to know the position of the LEDs.<br/>


An interface running on a computer and connecting to the e-puck2 either through Bluetooth (selector position 3) or via USB (selector position 8) based on the advanced sercom protocol was developed; from this interface it's possible  The source code is available from the repository [https://github.com/e-puck2/monitor https://github.com/e-puck2/monitor].
For instance to turn on LED1, LED5, body LED and front LED, issue the following command:<br/>
Available executables:
<code>rostopic pub -1 /mobile_base/cmd_led std_msgs/UInt8MultiArray "{data: [1,0,1,0,1,1]}"</code><br/>
* [http://projects.gctronic.com/epuck2/monitor_win.zip Windows executable]: tested on Windows 7 and Windows 10
* [http://projects.gctronic.com/epuck2/monitor_mac.zip Max OS X executable]


On Linux remember to apply the configuration explained in the chapter [http://www.gctronic.com/doc/index.php?title=e-puck2#Serial_Port Installation for Linux - Serial Port] in order to access the serial port.
To toggle the state of all the LEDs issue the following command:<br/>
<code>rostopic pub -1 /mobile_base/cmd_led std_msgs/UInt8MultiArray "{data: [2,2,2,2,2,2]}"</code>


===WiFi support===
=Tracking=
A dedicated WiFi version of the monitor application was developed to communicate with the robot through TCP protocol.<br/>
Some experiments are done with the [https://en.wikibooks.org/wiki/SwisTrack SwisTrack software] in order to be able to track the e-puck2 robots through a color marker placed on top of the robots.
For more information about the communication protocol, refer to section [http://www.gctronic.com/doc/index.php?title=e-puck2#WiFi_communication_protocol WiFi communication protocol].<br/>
The source code can be downloaded with the command <code>git clone -b wifi --recursive https://github.com/e-puck2/monitor.git</code><br/>
A Windows executable is available here [http://projects.gctronic.com/epuck2/monitor_wifi_27dddd4.zip Monitor WiFi for Windows].


==High level programming==
The requirements are the following:
...
* e-puck robots equipped with a color marker attached on top of the robot; beware that there should be a white border of about 1 cm to avoid wrong detection (marker merging). The colors marker were printed with a laser printer.
* USB webcam with a resolution of at least 640x480. In our tests we used the <code>Trust SpotLight Pro</code>.
* Windows OS: the SwisTrack pre-compiled package was built to run in Windows. Moreover the controller example depends on Windows libraries.<br/>''Anyway it's important to notice that SwisTrack is multiplatform and that the controller code can be ported to Linux.
* An arena with uniform light conditions to make the detection more robust.


=Main microcontroller=
==Controller example==
[http://www.gctronic.com/doc/index.php?title=e-puck2_main_microcontroller_programming main microcontroller programming]
In this example we exploit the ''SwisTrack'' blobs detection feature in order to detect the color markers on top of the robots and then track these blob with a ''Nearest Neighbour tracking'' algorithm.<br/>
The ''SwisTrack'' application get an image from the USB camera, then applies some conversions and thresholding before applying the blobs detection and finally tracks these blobs. All the data, like the blob's positions, are published to the network (TCP). <br/>
The controller is a separate application that receives the data from SwisTrack through the network and opens a Bluetooth connection with each robot in order to remote control them. In the example, the informations received are printed in the terminal while moving the robots around (obstacles avoidance).<br/>
The following schema shows the connections schema:<br/>
<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/tracking-schema.png <img width=400 src="http://projects.gctronic.com/epuck2/wiki_images/tracking-schema.png">]</span><br/>


=Radio module=


Follow these steps to run the example:
* program all the e-puck2 robots with the last factory firmware (see section [https://www.gctronic.com/doc/index.php?title=e-puck2#Firmware_update Firmware update]) and put the selector in position 3
* pair the robots with the computer, refer to section [https://www.gctronic.com/doc/index.php?title=e-puck2_PC_side_development#Connecting_to_the_Bluetooth Connecting to the Bluetooth]
* the controller example is based on the [https://www.gctronic.com/doc/index.php?title=e-puck2_PC_side_development#C.2B.2B_remote_library C++ remote library], so download it
* download the controller example by issueing the following command: <code>git clone https://github.com/e-puck2/e-puck2_tracking_example</code>.<br/> When building the example, make sure that both the library and the example are in the same directory
* download the pre-compiled [http://projects.gctronic.com/elisa3/SwisTrackEnvironment-10.04.13.zip SwisTrack software] and extract it. The ''SwisTrack'' executable can be found in <code>SwisTrackEnvironment/SwisTrack - Release.exe</code>
* prepare the arena: place the USB camera on the roof pointing towards the robots. Download the [http://projects.gctronic.com/epuck2/tracking/e-puck2-tracking-markers.pdf markers] and attach one of them on top of each robot.
* download the [http://projects.gctronic.com/epuck2/tracking/swistrack-conf.zip configuration files package] for ''SwisTrack'' and extract it. Run the ''SwisTrack'' executable and open the configuration file called <code>epuck2.swistrack</code>. All the components to accomplish the tracking of '''2 robots''' should be loaded automatically.<br/> If needed you can tune the various components to improve the blobs detection in your environment or for tracking more robots.
* Run the controller example: at the beginning you must enter the Bluetooth UART port numbers for the 2 robots. Then the robots will be moved slightly in order to identify which robot belong to which blob. Then the controller loop is started sending motion commands to the robots for doing obstacles avoidance and printing the data received from SwisTrack in the terminal.


=Programmer=
The following image shows the example running:<br/>
...
<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/tracking-epuck2.png <img width=250 src="http://projects.gctronic.com/epuck2/wiki_images/tracking-epuck2_small.png">]</span><br/>

Revision as of 14:02, 8 January 2020

e-puck2 main wiki

Robot configuration

This section explains how to configure the robot based on the communication channel you will use for your developments, thus you need to read only one of the following sections, but it would be better if you spend a bit of time reading them all in order to have a full understanding of the available configurations.

USB

The main microcontroller is initially programmed with a firmware that support USB communication.

If the main microcontroller isn't programmed with the factory firmware or if you want to be sure to have the last firmware on the robot, you need to program it with the last factory firmware by referring to section main microcontroller firmware update.

The radio module can be programmed with either the Bluetooth or the WiFi firmware, both are compatible with USB communication:

When you want to interact with the robot from the computer you need to place the selector in position 8 to work with USB.

Section PC interface gives step by step instructions on how to connect the robot with the computer via USB.

Once you tested the connection with the robot and the computer, you can start developing your own application by looking at the details behind the communication protocol. Both USB and Bluetooth communication channels use the same protocol called advanced sercom v2, refer to section Communication protocol: BT and USB for detailed information about this protocol.

Bluetooth

The main microcontroller and radio module of the robot are initially programmed with firmwares that together support Bluetooth communication.

If the main microcontroller and radio module aren't programmed with the factory firmware or if you want to be sure to have the last firmwares on the robot, you need to program them with the last factory firmwares:

When you want to interact with the robot from the computer you need to place the selector in position 3 if you want to work with Bluetooth.

Section Connecting to the Bluetooth gives step by step instructions on how to accomplish your first Bluetooth connection with the robot.

Once you tested the connection with the robot and the computer, you can start developing your own application by looking at the details behind the communication protocol. Both Bluetooth and USB communication channels use the same protocol called advanced sercom v2, refer to section Communication protocol: BT and USB for detailed information about this protocol.

WiFi

For working with the WiFi, the main microcontroller must be programmed with the factory firmware and the radio module must be programmed with a dedicated firmware (not the factory one):

Put the selector in position 15.

Section Connecting to the WiFi gives step by step instructions on how to accomplish your first WiFi connection with the robot.

The communication protocol is described in detail in the section Communication protocol: WiFi.

Connecting to the Bluetooth

The factory firmware of the radio module creates 3 Bluetooth channels using the RFcomm protocol when the robot is paired with the computer:

  1. Channel 1, GDB: port to connect with GDB if the programmer is in mode 1 or 3 (refer to chapter Configuring the Programmer's settings for more information about these modes)
  2. Channel 2, UART: port to connect to the UART port of the main processor
  3. Channel 3, SPI: port to connect to the SPI port of the main processor (not yet implemented. Just do an echo for now)

By default, the e-puck2 is not visible when you search for it in the Bluetooth utility of your computer.
To make it visible, it is necessary to hold the USER button (also labeled "esp32" on the electronic board) while turning on the robot with the ON/OFF button.


Then it will be discoverable and you will be able to pair with it.
Note that a prompt could ask you to confirm that the number written on the screen is the same on the e-puck. just ignore this and accept. Otherwise if you are asked for a pin insert 0000.

Windows 7

When you pair your computer with the e-puck2, 3 COM ports will be automatically created. To see which COM port corresponds to which channel you need to open the properties of the paired e-puck2 robot from Bluetooth devices. Then the ports and related channels are listed in the Services tab, as shown in the following figure:

Windows 10

When you pair your computer with the e-puck2, 6 COM ports will be automatically created. The three ports you will use have Outgoing direction and are named e_puck2_xxxxx-GDB, e_puck2_xxxxx-UART, e_puck2_xxxxx-SPI. xxxxx is the ID number of your e-puck2.
To see which COM port corresponds to which channel you need to:

  1. open the Bluetooth devices manager
  2. pair with the robot
  3. click on More Bluetooth options
  4. the ports and related channels are listed in the COM Ports tab, as shown in the following figure:

Linux

Once paired with the Bluetooth manager, you need to create the port for communicating with the robot by issueing the command:
sudo rfcomm bind /dev/rfcomm0 MAC_ADDR 2
The MAC address is visible from the Bluetooth manager. The parameter 2 indicates the channel, in this case a port for the UART channel is created. If you want to connect to another service you need to change this parameter accordingly (e.g. 1 for GDB and 3 for SPI). Now you can use /dev/rfcomm0 to connect to the robot.

Mac

When you pair your computer with the e-puck2, 3 COM ports will be automatically created: /dev/cu.e-puck2_xxxxx-GDB, /dev/cu.e-puck2_xxxxx-UART and /dev/cu.e-puck2_xxxxx-SPI. xxxxx is the ID number of your e-puck2.

Testing the Bluetooth connection

You need to download the PC application provided in section PC interface: available executables.
In the connection textfield you need to enter the UART channel port, for example:

  • Windows 7: COM258
  • Windows 10: e_puck2_xxxxx-UART
  • Linux: /dev/rfcomm0
  • Mac: /dev/cu.e-puck2_xxxxx-UART

and then click Connect.
You should start receiving sensors data and you can send commands to the robot.

Alternatively you can also use a simple terminal program (e.g. realterm in Windows) instead of the PC application, then you can issue manually the commands to receive sensors data or for setting the actuators (once connected, type h + ENTER for a list of availables commands).

Python examples

Here are some basic Python example that show how to get data from the robot through Bluetooth using the commands available with the advanced sercom v2:

  • printhelp.py: print the list of commands available in the advanced sercom v2
  • getprox.py: print the values of the proximity sensors

In both examples you need to set the correct Bluetooth serial port related to the robot.

Connecting to multiple robots

Here is a simple python script multi-robot.py that open a connection with 2 robots and exchange data with them using the advanced sercom protocol. This example can be extended to connect to more than 2 robots.

C++ remote library

A remote control library implemented in C++ is available to control the e-puck2 robot via a Bluetooth connection from the computer.
The remote control library is multiplatform and uses only standard C++ libraries.
You can download the library with the command git clone https://github.com/e-puck2/e-puck2_cpp_remote_library.
A simple example showing how to use the library is also available; you can download it with the command git clone https://github.com/e-puck2/e-puck2_cpp_remote_example.
Before building the example you need to build the library. Then when building the example, make sure that both the library and the example are in the same directory, that is you must end up with the following directory tree:

e-puck2_projects
|_ e-puck2_cpp_remote_library
|_ e-puck2_cpp_remote_example

The complete API reference is available in the following link e-puck2_cpp_remote_library_api_reference.pdf.

Connecting to the WiFi

The WiFi channel is used to communicate with robot faster than with Bluetooth. At the moment a QQVGA (160x120) color image is transferred to the computer together with the sensors values at about 10 Hz; of course the robot is also able to receive commands from the computer.
In order to communicate with the robot through WiFi, first you need to configure the network parameters on the robot by connecting directly to it, since the robot is initially configured in access point mode, as explained in the following section. Once the configuration is saved on the robot, it will then connect automatically to the network and you can connect to it.

The LED2 is used to indicate the state of the WiFi connection:

  • red indicates that the robot is in access point mode (waiting for configuration)
  • green indicates that the robot is connected to a network and has received an IP address
  • blue (toggling) indicates that the robot is transferring the image to the computer
  • off when the robot cannot connect to the saved configuration

Network configuration

If there is no WiFi configuration saved in flash, then the robot will be in access point mode in order to let the user connect to it and setup a WiFi connection. The LED2 is red.

The access point SSID will be e-puck2_0XXXX where XXXX is the id of the robot; the password to connect to the access point is e-puck2robot.
You can use a phone, a tablet or a computer to connect to the robot's WiFi and then you need to open a browser and insert the address 192.168.1.1. The available networks are scanned automatically and listed in the browser page as shown in figure 1. Choose the WiFi signal you want the robot to establish a conection with from the web generated list, and enter the related password; if the password is correct you'll get a message saying that the connection is established as shown in figure 2. After pressing OK you will be redirected to the main page showing the network to which you're connected and the others available nearby as shown in figure 3. If you press on the connected network, then you can see your IP address as shown in figure 4; take note of the address since it will be needed later.

[1] [2] [3] [4]


Now the configuration is saved in flash, this means that when the robot is turned on it will read this configuration and try to establish a connection automatically.
Remember that you need to power cycle the robot at least once for the new configuration to be active.

Once the connection is established, the LED2 will be green.

In order to reset the current configuration you need to press the user button for 2 seconds (the LED2 red will turn on), then you need to power cycle the robot to enter access point mode.


Finding the IP address

Often the IP address assigned to the robot will remain the same when connecting to the same network, so if you took note of the IP address in section Network configuration you're ready to go to the next section.

Otherwise you need to connect the robot to the computer with the USB cable, open a terminal and connect to the port labeled Serial Monitor (see chapter Finding the USB serial ports used). Then power cycle the robot and the IP address will be shown in the terminal (together with others informations), as illustrated in the following figure:

Testing the WiFi connection

A dedicated WiFi version of the PC application was developed to communicate with the robot through TCP protocol. You can download the executable from one of the following links:

If you are interested to the source code, you can download it with the command git clone -b wifi --recursive https://github.com/e-puck2/monitor.git

Run the PC application, insert the IP address of the robot in the connection textfield and then click on the Connect button. You should start receiving sensors data and you can send commands to the robot. The LED2 blue will toggle.

Web server

When the robot is in access point mode you can have access to a web page showing the camera image and some buttons that you can use to move the robot; it is a basic example that you can use as a starting point to develop your own web browser interface.
You can use a phone, a tablet or a computer to connect to the robot's WiFi and then you need to open a browser and insert the address 192.168.1.1/monitor.html.

Python examples

Here are some basic Python example that show how to get data from the robot through Bluetooth using the commands available with the advanced sercom v2:

  • printhelp.py: print the list of commands available in the advanced sercom v2
  • getprox.py: print the values of the proximity sensors

In both examples you need to set the correct Bluetooth serial port related to the robot.

Connecting to multiple robots

Here is a simple python script multi-robot.py that open a connection with 2 robots and exchange data with them using the advanced sercom protocol. This example can be extended to connect to more than 2 robots.

Communication protocol

This section is the hardest part to understand. It outlines all the details about the communication protocols that you'll need to implement in order to communicate with the robot form the computer. So spend a bit of time reading and re-reading this section in order to grasp completely all the details.

Bluetooth and USB

The communication protocol is based on the advanced sercom protocol, used with the e-puck1.x robot. The advanced sercom v2 includes all the commands available in the advanced sercom protocol and add some additional commands to handle the new features of the e-puck2 robot. In particular here are the new commands:

Command Description Return value / set value
0x08 Get all sensors see section Communication protocol: WiFi
0x09 Set all actuators see section Communication protocol: WiFi
0x0A Set RGB LEDs, values from 0 (off) to 100 (completely on) [LED2_red][LED2_blue][LED2_green][LED4_red][LED4_blue][LED4_green][LED6_red][LED6_blue][LED6_green][LED8_red][LED8_blue][LED8_green]
0x0B Get button state: 0 = not pressed, 1 = pressed [STATE]
0x0C Get all 4 microphones volumes [MIC0_LSB][MIC0_MSB][MIC1_LSB][MIC1_MSB][MIC2_LSB][MIC2_MSB][MIC3_LSB][MIC3_MSB]
0x0D Get distance from ToF sensor (millimeters) [DIST_LSB][DIST_MSB]
0x0E Get SD state: 0 = micro sd not connected, 1 = micro sd connected [STATE]

WiFi

The communication is based on TCP; the robot create a TCP server and wait for a connection.

Each packet is identified by an ID (1 byte). The following IDs are used to send data from the robot to the computer:

  • 0x00 = reserved
  • 0x01 = QQVGA color image packet (only the first segment includes this id); packet size (without id) = 38400 bytes; image format = RGB565
  • 0x02 = sensors packet; packet size (without id) = 104 bytes; the format of the returned values are based on the advanced sercom protocol and are compatible with e-puck1.x:

  • Acc: raw axes values, between -1500 and 1500, resolution is +-2g
  • Acceleration: acceleration magnitude , between 0.0 and about 2600.0 (~3.46 g)
  • Orientation: between 0.0 and 360.0 degrees
    0.0 deg90.0 deg180 deg270 deg
  • Inclination: between 0.0 and 90.0 degrees (when tilted in any direction)
    0.0 deg90.0 deg
  • Gyro: raw axes values, between -32768 and 32767, range is +-250dps
  • Magnetometer: raw axes values expressed in float, range is +-4912.0 uT (magnetic flux density expressed in micro Tesla)
  • Temp: temperature given in Celsius degrees
  • IR proximity: between 0 (no objects detected) and 4095 (object near the sensor)
  • IR ambient: between 0 (strong light) and 4095 (dark)
  • ToF distance: distance given in millimeters
  • Mic volume: between 0 and 4095
  • Motors steps: 1000 steps per wheel revolution
  • Battery:
  • uSD state: 1 if the micro sd is present and can be read/write, 0 otherwise
  • TV remote data: RC5 protocol
  • Selector position: between 0 and 15
  • Ground proximity: between 0 (no surface at all or not reflective surface e.g. black) and 1023 (very reflective surface e.g. white)
  • Ground ambient: between 0 (strong light) and 1023 (dark)
  • Button state: 1 button pressed, 0 button released
  • 0x03 = empty packet (only id is sent); this is used as an acknowledgment for the commands packet when no sensors and no image is requested

The following IDs are used to send data from the computer to the robot:

  • 0x80 = commands packet; packet size (without id) = 20 bytes:

  • request:
    • bit0: 0=stop image stream; 1=start image stream
    • bit1: 0=stop sensors stream; 1=start sensors stream
  • settings:
    • bit0: 1=calibrate IR proximity sensors
    • bit1: 0=disable onboard obstacle avoidance; 1=enable onboard obstacle avoidance (not implemented yet)
    • bit2: 0=set motors speed; 1=set motors steps (position)
  • left and right: when bit2 of settings field is 0, then this is the desired motors speed (-1000..1000); when 1 then this is the value that will be set as motors position (steps)
  • LEDs: 0=off; 1=on
    • bit0: 0=LED1 off; 1=LED1 on
    • bit1: 0=LED3 off; 1=LED3 on
    • bit2: 0=LED5 off; 1=LED5 on
    • bit3: 0=LED7 off; 1=LED7 on
    • bit4: 0=body LED off; 1=body LED on
    • bit5: 0=front LED off; 1=front LED on
  • RGB LEDs: for each LED, it is specified in sequence the value of red, green and blue (0...100)
  • sound id: 0x01=MARIO, 0x02=UNDERWOLRD, 0x04=STARWARS, 0x08=4KHz, 0x10=10KHz, 0x20=stop sound

For example to receive the camera image (stream) the following steps need to be followed:
1) connect to the robot through TCP
2) send the command packet:

0x80 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

3) read the ID (1 byte) and the QQVGA color image pakcet (38400 bytes)
4) go to step 3

Webots

TBD

ROS

This chapter explains how to use ROS with the e-puck2 robots by connecting them via Bluetooth to the computer that runs the ROS nodes. Basically all the sensors are exposed to ROS and you can also send commands back to the robot through ROS. Both Pyhton and cpp versions are implemented to give the user the possibility to choose its preferred programming language. Here is a general schema:
Click to enlarge

First of all you need to install and configure ROS, refer to http://wiki.ros.org/Distributions for more informations. This tutorial is based on ROS Kinetic.

Starting from the work done with the e-puck1 (see E-Puck ROS), we updated the code in order to support the e-puck2 robot.

Initial configuration

The following steps need to be done only once, after installing ROS:

1. If not already done, create a catkin workspace, refer to http://wiki.ros.org/catkin/Tutorials/create_a_workspace. Basically you need to issue the following commands:
  mkdir -p ~/catkin_ws/src
  cd ~/catkin_ws/src
  catkin_init_workspace
  cd ~/catkin_ws/
  catkin_make
  source devel/setup.bash 
2. You will need to add the line source ~/catkin_ws/devel/setup.bash to your .bashrc in order to automatically have access to the ROS commands when the system is started
3. Move to ~/catkin_ws/src and clone the ROS e-puck2 driver repo:
4. Install the dependencies:
  • ROS:
  • Python:
    • The ROS e-puck2 driver is based on the e-puck2 Python library that requires some dependencies:
      • install the Python setup tools: sudo apt-get install python-setuptools
      • install the Python image library: sudo apt-get install python-imaging
      • install pybluez: sudo pip install pybluez
        • install pybluez dependencies: sudo apt-get install libbluetooth-dev
  • cpp:
    • install the library used to communicate with Bluetooth: sudo apt-get install libbluetooth-dev
5. Open a terminal and go to the catkin workspace directory (~/catkin_ws) and issue the command catkin_make, there shouldn't be errors
6. Program the e-puck2 robot with the factory firmware and put the selector in position 3

Running the Python ROS node

First of all get the last version of the ROS e-puck2 driver from github. Move to ~/catkin_ws/src and issue: git clone -b e-puck2 https://github.com/gctronic/epuck_driver.
Then build the driver by opening a terminal and issueing the command catkin_make from within the catkin workspace directory (e.g. ~/catkin_ws).
Moreover make sure the node is marked as executable by opening a terminal and issueing the following command from within the catkin workspace directory (e.g. ~/catkin_ws): chmod +x ./src/epuck_driver/scripts/epuck2_driver.py.

Before actually starting the e-puck2 node you need to configure the e-puck2 robot as Bluetooth device in the system, refer to section Connecting to the Bluetooth.
Once the robot is paired with the computer, you need to take note of its MAC address (this will be needed when launching the ROS node). To know the MAC address of a paired robot, go to System Settings, Bluetooth and select the robot; once selected you'll see in the right side the related MAC address.

First thing to do before launching the script file is running the roscore, open another terminal tab and issue the command roscore.

Now you can finally start the e-puck2 ROS node, for this purposes there is a launch script (based on roslaunch).
Open a terminal and issue the following command: roslaunch epuck_driver epuck2_controller.launch epuck2_address:='B4:E6:2D:EB:9C:4F'.
B4:E6:2D:EB:9C:4F is the e-puck2 Bluetooth MAC address that need to be changed accordingly to your robot.

If all is going well you'll see the robot make a blink meaning it is connected and ready to exchange data and rviz will be opened showing the informations gathered from the topics published by the e-puck2 driver node.

The launch script is configured also to run the gmapping (SLAM) node that let the robot construct a map of the environment; the map is visualized in real-time directly in the rviz window. The gmapping package provides laser-based SLAM (Simultaneous Localization and Mapping) and since the e-puck2 has no laser sensor, the information from the 6 proximity sensors on the front side of the robot are interpolated to get 19 laser scan points.

The following graph shows all the topics published by the e-puck2 driver node and the rviz interface:
Click to enlarge Click to enlarge

Running the cpp ROS node

First of all get the last version of the ROS e-puck2 driver from github. Move to ~/catkin_ws/src and issue: git clone -b e-puck2 https://github.com/gctronic/epuck_driver_cpp.
Then build the driver by opening a terminal and issueing the command catkin_make from within the catkin workspace directory (e.g. ~/catkin_ws).

Before actually starting the e-puck2 node you need to configure the e-puck2 robot as Bluetooth device in the system, refer to section Connecting to the Bluetooth.
Once the robot is paired with the computer, you need to take note of its MAC address (this will be needed when launching the ROS node). To know the MAC address of a paired robot, go to System Settings, Bluetooth and select the robot; once selected you'll see in the right side the related MAC address.

First thing to do before launching the script file is running the roscore, open another terminal tab and issue the command roscore.

Now you can finally start the e-puck2 ROS node, for this purposes there is a launch script (based on roslaunch).
Open a terminal and issue the following command: roslaunch epuck_driver_cpp epuck2_controller.launch epuck2_address:='B4:E6:2D:EB:9C:4F'.
B4:E6:2D:EB:9C:4F is the e-puck2 Bluetooth MAC address that need to be changed accordingly to your robot.

If all is going well the robot will be ready to exchange data and rviz will be opened showing the informations gathered from the topics published by the e-puck2 driver node.

The launch script is configured also to run the gmapping (SLAM) node that let the robot construct a map of the environment; the map is visualized in real-time directly in the rviz window. The gmapping package provides laser-based SLAM (Simultaneous Localization and Mapping) and since the e-puck2 has no laser sensor, the information from the 6 proximity sensors on the front side of the robot are interpolated to get 19 laser scan points.

Move the robot

You have some options to move the robot.

The first one is to use the rviz interface: in the bottom left side of the interface there is a Teleop panel containing an interactive square meant to be used with differential drive robots. By clicking in this square you'll move the robot, for instance by clicking on the top-right section, then the robot will move forward-right.

The second method to move the robot is using the ros-kinetic-turtlebot-teleop ROS package. If not already done, you can install this package by issueing sudo apt-get install ros-kinetic-turtlebot-teleop.
There is a lunch file in the e-puck2 ROS driver that configures this package in order to be used with the e-puck2 robot. To start the launch file, issue the following command roslaunch epuck_driver epuck2_teleop.launch, then follow the instructions printed on the terminal to move the robot.

The third method is by directly publishing on the /mobile_base/cmd_vel topic, for instance by issueing the following command rostopic pub -1 /mobile_base/cmd_vel geometry_msgs/Twist -- '[0.0, 0.0, 0.0]' '[0.0, 0.0, 1.0]' the robot will rotate on the spot, instead by issueing the following command rostopic pub -1 /mobile_base/cmd_vel geometry_msgs/Twist -- '[4.0, 0.0, 0.0]' '[0.0, 0.0, 0.0]' the robot will move straight forward.
Beware that there shouldn't be any other node publishing on the /mobile_base/cmd_vel topic, otherwise your commands will be overwritten.

Control the RGB LEDs

The general command to change the RGB LEDs colors is the following:
rostopic pub -1 /mobile_base/rgb_leds std_msgs/UInt8MultiArray "{data: [LED2 red, LED2 green, LED2 blue, LED4 red, LED4 green, LED4 blue, LED6 red, LED6 green, LED6 blue, LED8 red, LED8 green, LED8 blue]}"
The values range is from 0 (off) to 100 (completely on). Have a look at the e-puck2 overview to know the position of the RGB LEDs.

For instance to set all the RGB LEDs to red, issue the following command:
rostopic pub -1 /mobile_base/rgb_leds std_msgs/UInt8MultiArray "{data: [100,0,0, 100,0,0, 100,0,0, 100,0,0]}"

To turn off all the RGB LEDs issue the following command:
rostopic pub -1 /mobile_base/rgb_leds std_msgs/UInt8MultiArray "{data: [0,0,0, 0,0,0, 0,0,0, 0,0,0]}"

Control the LEDs

The general command to change the LEDs state is the following:
rostopic pub -1 /mobile_base/cmd_led std_msgs/UInt8MultiArray "{data: [LED1, LED3, LED5, LED7, body LED, front LED]}"
The values are: 0 (off), 1 (on) and 2 (toggle). Have a look at the e-puck2 overview to know the position of the LEDs.

For instance to turn on LED1, LED5, body LED and front LED, issue the following command:
rostopic pub -1 /mobile_base/cmd_led std_msgs/UInt8MultiArray "{data: [1,0,1,0,1,1]}"

To toggle the state of all the LEDs issue the following command:
rostopic pub -1 /mobile_base/cmd_led std_msgs/UInt8MultiArray "{data: [2,2,2,2,2,2]}"

Tracking

Some experiments are done with the SwisTrack software in order to be able to track the e-puck2 robots through a color marker placed on top of the robots.

The requirements are the following:

  • e-puck robots equipped with a color marker attached on top of the robot; beware that there should be a white border of about 1 cm to avoid wrong detection (marker merging). The colors marker were printed with a laser printer.
  • USB webcam with a resolution of at least 640x480. In our tests we used the Trust SpotLight Pro.
  • Windows OS: the SwisTrack pre-compiled package was built to run in Windows. Moreover the controller example depends on Windows libraries.
    Anyway it's important to notice that SwisTrack is multiplatform and that the controller code can be ported to Linux.
  • An arena with uniform light conditions to make the detection more robust.

Controller example

In this example we exploit the SwisTrack blobs detection feature in order to detect the color markers on top of the robots and then track these blob with a Nearest Neighbour tracking algorithm.
The SwisTrack application get an image from the USB camera, then applies some conversions and thresholding before applying the blobs detection and finally tracks these blobs. All the data, like the blob's positions, are published to the network (TCP).
The controller is a separate application that receives the data from SwisTrack through the network and opens a Bluetooth connection with each robot in order to remote control them. In the example, the informations received are printed in the terminal while moving the robots around (obstacles avoidance).
The following schema shows the connections schema:


Follow these steps to run the example:

  • program all the e-puck2 robots with the last factory firmware (see section Firmware update) and put the selector in position 3
  • pair the robots with the computer, refer to section Connecting to the Bluetooth
  • the controller example is based on the C++ remote library, so download it
  • download the controller example by issueing the following command: git clone https://github.com/e-puck2/e-puck2_tracking_example.
    When building the example, make sure that both the library and the example are in the same directory
  • download the pre-compiled SwisTrack software and extract it. The SwisTrack executable can be found in SwisTrackEnvironment/SwisTrack - Release.exe
  • prepare the arena: place the USB camera on the roof pointing towards the robots. Download the markers and attach one of them on top of each robot.
  • download the configuration files package for SwisTrack and extract it. Run the SwisTrack executable and open the configuration file called epuck2.swistrack. All the components to accomplish the tracking of 2 robots should be loaded automatically.
    If needed you can tune the various components to improve the blobs detection in your environment or for tracking more robots.
  • Run the controller example: at the beginning you must enter the Bluetooth UART port numbers for the 2 robots. Then the robots will be moved slightly in order to identify which robot belong to which blob. Then the controller loop is started sending motion commands to the robots for doing obstacles avoidance and printing the data received from SwisTrack in the terminal.

The following image shows the example running: