e-puck2 robot side development and Pi-puck: Difference between pages

From GCtronic wiki
(Difference between pages)
Jump to navigation Jump to search
 
 
Line 1: Line 1:
[{{fullurl:e-puck2}} e-puck2 main wiki]<br/>
=Hardware=
=Installation of the e-puck2 environment=
==Overview==
<code>Eclipse_e-puck2</code> is a distribution of Eclipse IDE for C/C++ Developers specially modified to edit and compile e-puck2's projects out of the box. It doesn't require to be installed and everything needed is located in the package given. The only dependency needed to be able to run Eclipse is '''Java'''.
<span class="plainlinks">[https://projects.gctronic.com/epuck2/wiki_images/pipuck-overview.jpg <img width=600 src="https://projects.gctronic.com/epuck2/wiki_images/pipuck-overview-small.jpg">]</span><br/>
Features:
* Raspberry Pi zero W (rPi) connected to the robot via I2C
* interface between the robot base camera and the rPi via USB, up to 15 FPS
* 1 digital microphone and 1 speaker
* USB hub connected to the rPi with 2 free ports
* uUSB cable to the rPi uart port. Also ok for charging
* 2 chargers. 1 for the robot battery and 1 for the auxiliary battery on top of the extension
* charging contact points in front for automatic charging. External docking station available
* several extension options. 6 i2C channels, 2 ADC inputs
* several LED to show the status of the rPi and the power/chargers


==Installation for Windows==
==I2C bus==
===Java 8 32bits===
I2C is used to let communicate various elements present in the robot, Pi-puck and extensions. An overall schema is shown in the following figure:<br/>
This section can be ignored if Java version >= 8 32bits is already installed on your computer.<br>
<span class="plainlinks">[https://projects.gctronic.com/epuck2/wiki_images/i2c-buses.png <img width=600 src="https://projects.gctronic.com/epuck2/wiki_images/i2c-buses.png">]</span><br/>
To verify you already installed Java, you can open <code>Programs and Features</code> from the <code>control panel</code> and search for a <code>Java 8 Update xxx</code> install. If this entry isn't present, then you need to install it:
An I2C switcher is included in the Pi-puck extension in order to support additional I2C buses (the RPi alone has only one usable I2C bus). These are needed to avoid conflicts between Time-of-Flight sensors that have a fixed I2C address.


#Go to the [https://www.java.com/en/download/manual.jsp Java download page] and download the <code>Windows offline</code> pacakge. This is the 32bits version of Java.
=Getting started=
#Run the downloaded installer and follow its instructions to proceed with the installation of Java 32bits.
This introductory section explains the minimal procedures needed to work with the Raspberry Pi Zero W mounted on the Pi-puck extension board and gives a general overview of the available basic demos and scripts shipped with the system flashed on the micro SD. More advanced demos are described in the following separate sections (e.g. ROS), but the steps documented here are fundamental, so be sure to fully understand them. <br/>
#Close the internet browser if it opened at the end of the installation.


:<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/Java_windows.png <img width=500 src="http://projects.gctronic.com/epuck2/wiki_images/Java_windows.png">]</span><br/>
The extension is mostly an interface between the e-puck robot and the Raspberry Pi, so you can exploit the computational power of a Linux machine to extend the robot capabilities.<br/>
:''Java download page''


===Eclipse_e-puck2===
In most cases, the Pi-puck extension will be attached to the robot, but it's interesting to note that it can be used also alone when the interaction with the robot isn't required.<br/>
#Download the [http://projects.gctronic.com/epuck2/Eclipse_e-puck2/Eclipse_e-puck2_Win32_11_apr_2018.zip Eclipse_e-puck2 package for windows].
The following sections assume the full configuration (robot + extension), unless otherwise stated.
#Unzip the downloaded file to the location you want (can take time). It is strongly recommended for better performance and less extraction time to use 7Zip. You can download it on http://www.7-zip.org.
#You can now run the <code>Eclipse_e-puck2.exe</code> to launch Eclipse.
#You can create a shortcut to <code>Eclipse_e-puck2.exe</code> and place it anywhere if you want.


:<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/Eclipse_e-puck2_Folder_Windows.png <img width=800 src="http://projects.gctronic.com/epuck2/wiki_images/Eclipse_e-puck2_Folder_Windows.png">]</span><br/>
==Requirements==
:''Eclipse_e-puck2 folder obtained after extraction''
The robot must be programmed with a special firmware in order to communicate via I2C bus with the Raspberry Pi mounted on the Pi-puck extension. The same I2C bus is shared by all the devices (camera, IMU, distance sensor, others extensions), the main microcontroller and the Raspberry Pi. Since the Raspberry Pi acts as I2C master, these devices will not be anymore reachable directly from the robot main microcontroller that will act instead as I2C slave.


'''Important things to avoid :'''
===e-puck1===
:1. The path to the <code>Eclipse_e-puck2</code> folder must contain zero space.
The e-puck1 robot must be programmed with the following firmware [https://raw.githubusercontent.com/yorkrobotlab/pi-puck/master/e-puck1/pi-puck-e-puck1.hex pi-puck-e-puck1.hex].
::Example :
::<code>C:\epfl_stuff\Eclipse_e-puck2</code> OK
::<code>C:\epfl stuff\Eclipse_e-puck2</code> NOT OK
:2. You must not put <code>Eclipse_e-puck2</code> folder into <code>Program Files (x86)</code>. Otherwise the compilation when using Eclipse will not work.
:3. The file’s structure in the <code>Eclipse_e-puck2</code> folder must remain the same. It means no file inside this folder must be moved to another place.


===Configuring the PATH variable===
===e-puck2===
The <code>PATH</code> variable is an environment variable used to store a list of the paths to the folders containing the executables we can then run in a terminal from any path.
The e-puck2 robot must be programmed with the following firmware [https://projects.gctronic.com/epuck2/gumstix/e-puck2_main-processor_extension_b346841_07.06.19.elf  e-puck2_main-processor_extension.elf (07.06.19)] and the selector must be placed in position 10.<br/>
The source code is available in the <code>gumstix</code> branch of the repo <code>https://github.com/e-puck2/e-puck2_main-processor</code>.


If you want to use the <code>arm-none-eabi</code> toolchain provided inside the <code>Eclipse_e-puck2</code> package, you have to add it to the <code>PATH</code> variable to be able to call it inside a terminal window. To set the <code>PATH</code> variable you need to issue the following command:
==Turn on/off the extension==
To turn on the extension you need to press the <code>auxON</code> button as shown in the follwoing figure; this will turn on also the robot (if not already turned on). Similarly, if you turn on the robot then also the extension will turn on automatically.<br/>
<span class="plainlinks">[https://projects.gctronic.com/epuck2/wiki_images/pipuck_btn_on_off.jpg <img width=250 src="https://projects.gctronic.com/epuck2/wiki_images/pipuck_btn_on_off-small.jpg">]</span><br/>


<code>set PATH=your_installation_path\Eclipse_e-puck2\Tools\gcc-arm-none-eabi-7-2017-q4-major-win32\bin;%PATH%</code>
To turn off the Pi-puck you need to press and hold the <code>auxON</code> button for 2 seconds; this will initiate the power down procedure.<br>


What is important to know is that this procedure is temporary. It applies only to the terminal window used to type it. If you open a new terminal window or close this one, you will have to set again the <code>PATH</code> variable.
Beware that by turning off the robot, the extension will not be turned off automatically if it is powered from another source like the micro usb cable or a secondary battery. You need to use its power off button to switch it off. Instead if there is no other power source, then by turning off the robot also the extension will be turned off (not cleanly).


If you want to set the <code>PATH</code> variable permanently, then go to <code>Control panel</code> => <code>System</code> => <code>Advanced system settings</code> => <code>Environment variables</code>. A list of variables defined for the user is shown, double click on the <code>PATH</code> variable (from the user variables list) and add at the end <code>;your_installation_path\Eclipse_e-puck2\Tools\gcc-arm-none-eabi-7-2017-q4-major-win32\bin</code>, then click <code>OK</code> three times.
==Console mode==
The Pi-puck extension board comes with a pre-configured system ready to run without any additional configuration.<br/>
In order to access the system from a PC in console mode, the following steps must be performed:<br/>
1. connect a micro USB cable from the PC to the extension module. If needed, the drivers are available in the following link [https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers USB to UART bridge drivers]<br/>
<span class="plainlinks">[https://projects.gctronic.com/epuck2/wiki_images/pipuck_usb.png <img width=250 src="https://projects.gctronic.com/epuck2/wiki_images/pipuck_usb-small.png">]</span><br/>
2. execute a terminal program and configure the connection with 115200-8N1 (no flow control). The serial device is the one created when the extension is connected to the computer<br/>
3. switch on the robot (the extension will turn on automatically); now the terminal should display the Raspberry Pi booting information. If the robot isn't present, then you can directly power on the extension board with the related button<br/>
4. login with <code>user = pi</code>, <code>password = raspberry</code><br/>


Note : The <code>arm-none-eabi</code> version can differ from the one given in this example. It could be needed to adapt the path to the correct version.
==Battery charge==
You can either charge the robot battery or the additional battery connected to the Pi-puck extension or both the batteries by simply plugging the micro USB cable.<br/>
The following figure shows the connector for the additional battery.<br/>
<span class="plainlinks">[https://projects.gctronic.com/epuck2/wiki_images/pipuck_battery.jpg <img width=250 src="https://projects.gctronic.com/epuck2/wiki_images/pipuck_battery-small.jpg">]</span><br/>


==Installation for Linux==
The robot can also autonomously charge itself if the charging wall is available. The Pi-puck extension includes two spring contacts on the front side that let the robot easily make contact with the charging wall and charge itself. The charging wall and the spring contacts are shown in the following figures:<br/>
===Java 8===
<span class="plainlinks">[https://www.gctronic.com/img2/shop/pipuck-charger-robot.jpg <img width=250 src="https://www.gctronic.com/img2/shop/pipuck-charger-robot-small.jpg">]</span>
This section can be ignored if Java is already installed on your computer.<br>
<span class="plainlinks">[https://projects.gctronic.com/epuck2/wiki_images/pipuck_contacts.jpg <img width=250 src="https://projects.gctronic.com/epuck2/wiki_images/pipuck_contacts-small.jpg">]</span><br/>
To verify whether it is installed or not you can type the following command into a terminal window:
<pre>update-java-alternatives -l</pre>
If Java is installed, you will get some information about it, otherwise the command will be unknown.<br>
You need to have Java 1.8.xxxx listed to be able to run Eclipse_e-puck2.


Type the following commands in a terminal session to install Java SDK:
==Reset button==
<pre>sudo add-apt-repository ppa:openjdk-r/ppa
A button is available to reset the robot, when pressed it will resets only the robot restarting its firmware. This is useful for instance during development or for specific demos in which a restart of the robot is needed. In these cases you don't need to turn off completely the robot (and consequently also the Pi-puck if energy is supplied by the robot) but instead you can simply reset the robot. The position of the reset button is shown in the following figure:<br/>
sudo apt-get update
<span class="plainlinks">[https://projects.gctronic.com/epuck2/wiki_images/pipuck_reset.png <img width=250 src="https://projects.gctronic.com/epuck2/wiki_images/pipuck_reset-small.png">]</span><br/>
sudo apt-get install openjdk-8-jre </pre>


===Eclipse_e-puck2===
=How to communicate with the robot and its sensors=
#Install <code>make</code> (probably you already have it installed) by issueing the command: <code>sudo apt-get install make</code>
==Communicate with the e-puck1==
#Download the Eclipse_e-puck2 package for Linux [http://projects.gctronic.com/epuck2/Eclipse_e-puck2/Eclipse_e-puck2_Linux_11_apr_2018_32bits.tar.gz 32bits] / [http://projects.gctronic.com/epuck2//Eclipse_e-puck2/Eclipse_e-puck2_Linux_11_apr_2018_64bits.tar.gz 64bits]. Pay attention to the 32bits or 64bits version. If unsure which Linux version you have, enter the following comand <code>uname -a</code> in the terminal window and look for i686 (32bit) or x86_64 (64 bit). 
Refer to the repo [https://github.com/yorkrobotlab/pi-puck-e-puck1 https://github.com/yorkrobotlab/pi-puck-e-puck1].
#Extract the downloaded file to the location you want (can take time).
#You can now run the <code>Eclipse_e-puck2</code> executable to launch Eclipse.


:<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/Eclipse_e-puck2_Folder_Linux.png <img width=800 src="http://projects.gctronic.com/epuck2/wiki_images/Eclipse_e-puck2_Folder_Linux.png">]</span><br/>
==Communicate with the e-puck2==
:''Eclipse_e-puck2 folder obtained after extraction''
An example showing how to exchange data between the robot and the Pi-puck extension is available in the Pi-puck repository; you can find it in the directory <code>/home/pi/Pi-puck/e-puck2/</code>.<br/>
You can build the program with the command <code>gcc e-puck2_test.c -o e-puck2_test</code>.<br/>
Now you can run the program by issueing <code>./e-puck2_test</code>; this demo will print the sensors data on the terminal and send some commands to the robot at 2 Hz.<br/>
The same example is also available in Python, you can run it by issueing <code>python3 e-puck2_test.py</code>.


Note : The icon of the Eclipse_e-puck2 executable will appear after the first launch of the program.
===Packet format===
Extension to robot packet format, 20 bytes payload (the number in the parenthesis represents the bytes for each field):
{| border="1"
| Left speed (2)
| Right speed (2)
| Speaker (1)
| LED1, LED3, LED5, LED7 (1)
| LED2 RGB (3)
| LED4 RGB (3)
| LED6 RGB (3)
| LED8 RGB (3)
| Settings (1)
| Checksum (1)
|}
* Left, right speed: [-2000 ... 2000]
* Speaker: sound id = [0, 1, 2]
* LEDs on/off flag: bit0 for LED1, bit1 for LED3, bit2 for LED5, bit3 for LED7
* RGB LEDs: [0 (off) ... 100 (max)]
* Settings:
** bit0: 1=calibrate IR proximity sensors
** bit1: 0=disable onboard obstacle avoidance; 1=enable onboard obstacle avoidance (not implemented yet)
** bit2: 0=set motors speed; 1=set motors steps (position)
* Checksum: Longitudinal Redundancy Check (XOR of the bytes 0..18)


'''Important things to avoid :'''
Robot to extension packet format, 47 bytes payload (the number in the parenthesis represents the bytes for each field):
:1. You cannot create a Link to the Eclipse_e-puck2 executable because otherwise the program will think its location is where the Link is and it will not find the resource located in the Eclipse_e-puck2 folder.
{| border="1"
:2. The path to the Eclipse_e-puck2 folder must contain zero space.
| 8 x Prox (16)
::Example :
| 8 x Ambient (16)
::<code>/home/student/epfl_stuff/Eclipse_e-puck2</code> OK
| 4 x Mic (8)
::<code>/home/student/epfl stuff/Eclipse_e-puck2</code> NOT OK
| Selector + button (1)
:3. The file’s structure in the Eclipse_e-puck2 folder must remain the same. It means no file inside this folder must be moved to another place.
| Left steps (2)
| Right steps (2)
| TV remote (1)
| Checksum
|}
* Selector + button: selector values represented by 4 least significant bits (bit0, bit1, bit2, bit3); button state is in bit4 (1=pressed, 0=not pressed)
* Checksum: Longitudinal Redundancy Check (XOR of the bytes 0..45)


===Configuring the PATH variable===
==Communicate with the IMU==
The <code>PATH</code> variable is an environment variable used to store a list of the paths to the folders containing the executables we can then run in a terminal from any path.
===e-puck1===
An example written in C showing how to read data from the IMU (LSM330) mounted on e-puck 1.3 is available in the Pi-puck repository; you can find it in the directory <code>/home/pi/Pi-puck/e-puck1/</code>.<br/>
You can build the program with the command <code>gcc e-puck1_imu.c -o e-puck1_imu</code>.<br/>
Now you can run the program by issueing <code>./e-puck1_imu</code> and then choose whether to get data from the accelerometer or gyroscope; this demo will print the sensors data on the terminal.<br/>


If you want to use the <code>arm-none-eabi</code> toolchain provided inside the <code>Eclipse_e-puck2</code> package, you have to add it to the <code>PATH</code> variable to be able to call it inside a terminal window. To set the <code>PATH</code> variable you need to issue the following command:
===e-puck2===
An example showing how to read data from the IMU (MPU-9250) is available in the Pi-puck repository; you can find it in the directory <code>/home/pi/Pi-puck/e-puck2/</code>.<br/>
You can build the program with the command <code>gcc e-puck2_imu.c -o e-puck2_imu</code>.<br/>
Now you can run the program by issueing <code>./e-puck2_imu</code> and then choose whether to get data from the accelerometer or gyroscope; this demo will print the sensors data on the terminal.<br/>
The same example is also available in Python, you can run it by issueing <code>python3 e-puck2_imu.py</code>.


<code>export PATH=your_installation_path/Eclipse_e-puck2/Tools/gcc-arm-none-eabi-7-2017-q4-major/bin:$PATH</code>
==Communicate with the ToF sensor==
The Time of Flight sensor is available only on the e-puck2 robot.<br/>


What is important to know is that this procedure is temporary. It applies only to the terminal window used to type it. If you open a new terminal window or close this one, you will have to set again the <code>PATH</code> variable.
First of all you need to verify that the VL53L0X Python package is installed with the following command: <code>python3 -c "import VL53L0X"</code>. If the command returns nothing you're ready to go, otherwise if you receive an <code>ImportError</code> then you need to install the package with the command: <code>pip3 install git+https://github.com/gctronic/VL53L0X_rasp_python</code>.<br/>


If you want to set the <code>PATH</code> variable permanently, then ...
A Python example showing how to read data from the ToF sensor is available in the Pi-puck repository; you can find it in the directory <code>/home/pi/Pi-puck/e-puck2/</code>.<br/>
You can run the example by issueing <code>python3 VL53L0X_example.py</code> (this is the example that you can find in the repository [https://github.com/gctronic/VL53L0X_rasp_python/tree/master/python https://github.com/gctronic/VL53L0X_rasp_python/tree/master/python]).


Note : The <code>arm-none-eabi</code> version can differ from the one given in this example. It could be needed to adapt the path to the correct version.
==Capture an image==
The robot camera is connected to the Pi-puck extension as a USB camera, so you can access it very easily.<br/>
An example showing how to capture an image from the robot's camera using OpenCV is available in the Pi-puck repository; you can find it in the directory <code>/home/pi/Pi-puck/snapshot/</code>.<br/>
You can build the program with the command <code>g++ $(pkg-config --libs --cflags opencv) -ljpeg -o snapshot snapshot.cpp</code>.<br/>
Now you can run the program by issueing <code>./snapshot</code>; this will save a VGA image (JPEG) named <code>image01.jpg</code> to disk.<br/>
The program can accept the following parameters:<br/>
<code>-d DEVICE_ID</code> to specify the input video device from which to capture an image, by default is <code>0</code> (<code>/dev/video0</code>). This is useful when working also with the [http://www.gctronic.com/doc/index.php?title=Omnivision_Module_V3 Omnivision V3] extension that crates another video device; in this case you need to specify <code>-d 1</code> to capture from the robot camera.<br/>
<code>-n NUM</code> to specify how many images to capture (1-99), by default is 1<br/>
<code>-v</code> to enable verbose mode (print some debug information)<br/>
Beware that in this demo the acquisition rate is fixed to 5 Hz, but the camera supports up to '''15 FPS'''.<br/>
The same example is also available in Python, you can run it by issueing <code>python snapshot.py</code>.


==Installation for Mac==
==Communicate with the ground sensors extension==
===Command Line Tools ===
Both e-puck1 and e-puck2 support the [https://www.gctronic.com/doc/index.php?title=Others_Extensions#Ground_sensors ground sensors extension].<br/>
To compile on Mac with Eclipse_e-puck2, it is necessary to have the Command Line Tools installed. It is a bundle of many commonly used tools.<br>
This extension is attached to the I2C bus and can be read directly from the Pi-puck.<br/>
You can install it by typing the following command in a terminal window. It will then open a popup asking you if you want to install this bundle. Otherwise it will tell you it is already installed.
An example written in C showing how to read data from the ground sensors extension is available in the Pi-puck repository; you can find it in the directory <code>/home/pi/Pi-puck/ground-sensor/</code>.<br/>
<pre>xcode-select --install</pre>
You can build the program with the command <code>gcc groundsensor.c -o groundsensor</code>.<br/>
Now you can run the program by issueing <code>./groundsensor</code>; this demo will print the sensors data on the terminal.<br/>
The same example is also available in Python, you can run it by issueing <code>python3 groundsensor.py</code>.


===Java 8===
==Communicate with the range and bearing extension==
This section can be ignored if Java is already installed on your computer.<br>
Both e-puck1 and e-puck2 support the [https://www.gctronic.com/doc/index.php?title=Others_Extensions#Range_and_bearing range and bearing extension].<br/>
To verify whether it is installed or not you can type the following command into a terminal window. It will list all the Java runtimes installed on your Mac.
This extension is attached to the I2C bus and can be read directly from the Pi-puck.<br/>
<pre>/usr/libexec/java_home -V</pre>
An example written in C showing how to start playing with the range and bearing extension is available in the Pi-puck repository; you can find it in the directory <code>/home/pi/Pi-puck/randb/</code>. You need two boards: one is the transmitter (run <code>randb_tx</code>) and the other is the receiver (run <code>randb_rx</code>). The receiver will print the data received from the transmitter.<br/>
You need to have <code>Java SE 8</code> listed to be able to run Eclipse_e-puck2.
You can build the programs with the command <code>gcc randb_tx.c -o randb_tx</code> and <code>gcc randb_rx.c -o randb_rx</code>.<br/>
The same example is also available in Python, you can run it by issueing <code>python3 randb_tx.py</code> and <code>python3 randb_rx.py</code>.


:1. Go to the [http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html Java download page] and download the <code>Mac OS X Java 8 SE Development Kit</code>. It is the .dmg file without the Demos and Samples.  
==Wireless remote control==
::For example: <code>jdk-8uXXX-macosx-x64.dmg</code>
If you want to control the robot from a computer, for instance when you have an algorithm that requires heavy processing not suitable for the Pi-puck or when the computer acts as a master controlling a fleet of robots that return some information to the controller, then you have 3 options:<br/>
:2. Open the .dmg file downloaded, run the installer and follow the instructions to proceed with the installation of Java SDK.
1) The computer establishes a WiFi connection with the Pi-puck to receive data processed by the Pi-puck (e.g. results of an image processing task); at the same time the computer establishes a Bluetooth connection directly with the e-puck2 robot to control it.
:''Disadvantages'':
:- the Bluetooth standard only allow up to seven simultaneous connections
:- doubled latency (Pi-puck <-> pc and pc <-> robot)
2) The computer establishes a WiFi connection with both the Pi-puck and the e-puck2 robot.
:''Advantages'':
:- only one connection type needed, easier to handle
:''Disadvantages'':
:- doubled latency (Pi-puck <-> pc and pc <-> robot)
3) The computer establishes a WiFi connection with the Pi-puck and then the Pi-puck is in charge of controlling the robot via I2C based on the data received from the computer controller.
:''Advantages'':
:- less latency involved
:- less number of connections to handle
:- depending on your algorithm, it would be possible to initially develop the controller on the computer (easier to develop and debug) and then transfer the controller directly to the Pi-puck without the need to change anything related to the control of the robot via I2C


:<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/Java_mac.png <img width=500 src="http://projects.gctronic.com/epuck2/wiki_images/Java_mac.png">]</span><br/>
The following figure summarizes these 3 options:<br/>
:''Java download page''
<span class="plainlinks">[https://projects.gctronic.com/epuck2/wiki_images/wireless-remote-control-options.png <img width=600 src="https://projects.gctronic.com/epuck2/wiki_images/wireless-remote-control-options.png">]</span>


===Eclipse_e-puck2===
=How to work with the Pi-puck=
:1. Download the [http://projects.gctronic.com/epuck2/Eclipse_e-puck2/Eclipse_e-puck2_Mac_11_apr_2018.dmg Eclipse_e-puck2 package for Mac].
==Demos and scripts update==
:2. Open the .dmg file downloaded and DragAndDrop the Eclipse_e-puck2.app into the Applications folder
First of all you should update to the last version of the demos and scripts released with the system that you can use to start playing with the Pi-puck extension and the robot.<br/>
::Note : You can place the Eclipse_e-puck2.app anywhere, as long as the full path to it doesn’t contain any space, if you don’t want it to be in Applications.
To update the repository follow these steps:<br/>
:3. You can create an Alias to Eclipse_e-puck2.app and place it anywhere if you want.
1. go to the directory <code>/home/pi/Pi-puck</code><br/>
2. issue the command <code>git pull</code><br/>
Then to update some configurations of the system:<br/>
1. go to the directory <code>/home/pi/Pi-puck/system</code><br/>
2. issue the command <code>./update.sh</code>; the system will reboot.<br/>
You can find the Pi-puck repository here [https://github.com/gctronic/Pi-puck https://github.com/gctronic/Pi-puck].<br/>


===First launch and Gatekeeper===
==Audio recording==
It’s very likely that Gatekeeper (one of the protections of Mac OS) will prevent you to launch Eclipse_e-puck2.app because it isn’t signed from a known developer.<br>
Use the <code>arecord</code> utility to record audio from the onboard microphone. The following example shows how to record an audio of 2 seconds (<code>-d</code> parameter) and save it to a wav file (<code>test.wav</code>):<br/>
If you can’t run the program because of a warning of the system, press <code>OK</code> and try to launch it by right clicking on it and choosing <code>open</code> in the contextual menu (may be slow to open the first time).<br>
<code>arecord -Dmic_mono -c1 -r16000 -fS32_LE -twav -d2 test.wav</code><br/>
If <code>Unable to open "Eclipse_e-puck2.app" because this app comes from an unidentified developer.</code> or if <code>"Eclipse.app" is corrupted and cannot be opened. You should place this item in the Trash.</code> appears after executing the app the first time, it is needed to disable temporarily Gatekeeper.
You can also specify a rate of 48 KHz with <code>-r48000</code>


To do so :
==Audio play==
Use <code>aplay</code> to play <code>wav</code> files and <code>mplayer</code> to play <code>mp3</code> files.


:1. Go to <code>System Preferences->security and privacy->General</code> and authorize downloaded application from <code>Anywhere</code>.
==Battery reading==
An example showing how to measure both the battery of the robot and the battery of the Pi-puck extension is available in the Pi-puck repository; you can find it in the directory <code>/home/pi/Pi-puck/battery/</code>.<br/>
The first time you need to change the mode of the script in order to be executable with the command <code>sudo chmod +x read-battery.sh</code>.<br/>
Then you can start reading the batteries value by issueing <code>./read-battery.sh</code>.; this demo will print the batteries values (given in Volts) on the terminal.


::<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/security_tab_mac.png <img width=500 src="http://projects.gctronic.com/epuck2/wiki_images/security_tab_mac.png">]</span><br/>
==WiFi configuration==
::''Security settings of Mac OS''
Specify your network configuration in the file <code>/etc/wpa_supplicant/wpa_supplicant-wlan0.conf</code>.<br/>
Example:<br/>
<pre>
ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1
country=CH
network={
        ssid="MySSID"
        psk="9h74as3xWfjd"
}
</pre>
You can have more than one <code>network</code> parameter to support more networks. For more information about ''wpa_supplicant'' refer to [https://hostap.epitest.fi/wpa_supplicant/ https://hostap.epitest.fi/wpa_supplicant/].


::If you are on Mac OS Sierra or greater (greater or equal to Mac OS 10.12), you must type the following command on the terminal to make the option above appear.
Once the configuration is done, you can also connect to the Pi-puck with <code>SSH</code>. If you are working in Windows you can use [https://www.putty.org/ PuTTY].
::<pre>sudo spctl --master-disable</pre>
:2. Now you can try to run the application and it should work.
:3. If Eclipse opened successfully, it is time to reactivate Gatekeeper. Simply set back the setting of Gatekeeper.
::For the ones who needed to type a command to disable Gatekeeper, here is the command to reactivate it.
::<pre>sudo spctl --master-enable</pre>


This procedure is only needed the first time. After that Gatekeeper will remember your choice to let run this application and will not bother you anymore, as long as you use this application. If you re-download it, you will have to redo the procedure for Gatekeeper.
===How to know your IP address===
A simple method to know your IP address is to connect the USB cable to the Pi-puck extension and issue the command <code>ip a</code>; from the command's result you will be able to get you current assigned IP address.


'''Important things to avoid :'''
If you prefer to know your IP address remotely (without connecting any cable) then you can use <code>nmap</code>.<br/>
:1. The path to the Eclipse_e-puck2.app must contain zero space.  
For example you can search all connected devices in your network with the following command: <code>nmap 192.168.1.*</code>. Beware that you need to specify the subnet based on your network configuration.<br/>
::Example :
From the command's result you need to look for the hostname <code>raspberrypi</code>.<br/>
::<code>/home/student/epfl_stuff/Eclipse_e-puck2</code> OK
If you are working in Windows you can use the [https://nmap.org/zenmap/ Zenmap] application.
::<code>/home/student/epfl stuff/Eclipse_e-puck2</code> NOT OK
:2. The file’s structure in the Eclipse_e-puck2.app must remain the same. It means no file inside this app must be moved to another place.


===Configuring the PATH variable===
==File transfer==
The <code>PATH</code> variable is an environment variable used to store a list of the paths to the folders containing the executables we can then run in a terminal from any path.
===USB cable===
You can transfer files via USB cable between the computer and the Pi-puck extension by using on of the <code>zmodem</code> protocol.<br/>
The <code>lrzsz</code> package is pre-installed in the system, thus you can use the <code>sx</code> and <code>rx</code> utilities to respectevely send files to the computer and receive files from the computer.<br/>
Example of sending a file to the computer using the <code>Minicom</code> terminal program:<br/>
1. in the Pi-puck console type <code>sx --zmodem fliename.ext</code>. The transfer should start automatically and you'll find the file in the home directory.<br/>
<!--2. to start the transfer type the sequence <code>CTRL+A+R</code>, then chose <code>xmodem</code> and finally enter the name you want to assign to the received file. You'll find the file in the home directory.<br/>-->
Example of receiving a file from the computer using the <code>Minicom</code> terminal program:<br/>
1. in the Pi-puck console type <code>rx -Z</code><br/>
2. to start the transfer type the sequence <code>CTRL+A+S</code>, then chose <code>zmodem</code> and select the file you want to send with the <code>spacebar</code>. Finally press <code>enter</code> to start the transfer.<br/>
===WiFi===
The Pi-puck extension supports <code>SSH</code> connections.<br/>
To exchange files between the Pi-puck and the computer, the <code>scp</code> tool (secure copy) can be used. An example of transferring a file from the Pi-puck to the computer is the following:<br/>
<code>scp pi@192.168.1.20:/home/pi/example.txt example.txt</code>


If you want to use the <code>arm-none-eabi</code> toolchain provided inside the <code>Eclipse_e-puck2</code> package, you have to add it to the <code>PATH</code> variable to be able to call it inside a terminal window. To set the <code>PATH</code> variable you need to issue the following command:
If you are working in Windows you can use [https://www.putty.org/ PuTTY].


<code>export PATH=your_installation_path/Eclipse_e-puck2.app/Contents/Eclipse_e-puck2/Tools/gcc-arm-none-eabi-7-2017-q4-major/bin:$PATH</code>
==Image streaming==


What is important to know is that this procedure is temporary. It applies only to the terminal window used to type it. If you open a new terminal window or close this one, you will have to set again the <code>PATH</code> variable.


If you want to set the <code>PATH</code> variable permanently, then ...
==Bluetooth LE==
An example of a ''BLE uart service'' is available in the Pi-puck repository; you can find it in the directory <code>/home/pi/Pi-puck/ble/</code>.<br/>
To start the service you need to type: <code>python uart_peripheral.py</code>.<br/>
Then you can use the ''e-puck2-android-ble app'' you can find in chapter [https://www.gctronic.com/doc/index.php?title=e-puck2_mobile_phone_development#Connecting_to_the_BLE Connecting to the BLE] in order to connect to the Pi-puck extension via BLE. Once connected you'll receive some dummy data for the proximity values and by clicking on the motion buttons you'll see the related action printed on the Pi-puck side. This is a starting point that you can extend based on your needs.


Note : The <code>arm-none-eabi</code> version can differ from the one given in this example. It could be needed to adapt the path to the correct version.
=Operating system=
The system is based on Raspbian Stretch and can be downloaded from the following link [https://projects.gctronic.com/epuck2/PiPuck/pi-puck-os_16.12.19.zip pi-puck-os_16.12.19.zip].


=Get the source code=
When booting the first time, the first thing to do is expanding the file system in order to use all the available space on the micro sd:<br/>
The code of the e-puck2 is open source and is available as a git repository. To download the source code you need to install git on your system:
1. <code>sudo raspi-config</code><br/>
* Windows: downlaod git from [https://gitforwindows.org/ https://gitforwindows.org/] and follow the installation instructions (default configuration is ok)
2. Select <code>Advanced Options</code> and then <code>Expand Filesystem</code><br/>
* Linux: issue the command <code>sudo apt-get install git</code>
3. reboot
* Mac: issue the command <code>brew install git</code>


The source code can downloaded with the command:  <code>git clone --recursive https://github.com/e-puck2/e-puck2_main-processor.git</code><br/>
==e-puck2 camera configuration==
The command must be issued in <code>Git bash</code> on Windows, or in a terminal on Linux / Mac.
The e-puck2 camera need to be configured through I2C before it can be used. For this reason a Python script is called at boot that detects and configures the camera. The script resides in the Pi-puck repository installed in the system (<code>/home/pi/Pi-puck/camera-configuration.py</code>), so beware to not remove it.


This repository contains the main microcontroller standard firmware together with the e-puck2 library. This library includes all the functions needed to interact with the robot's sensors and actuators; the standard firmware shows how to use these functions.<br/>
If the robot is plugged after the boot process is completed, you need to call manually the Python configuration script before using the camera by issueing the command <code>python3 /home/pi/Pi-puck/camera-configuration.py</code>.


A snapshot of the repository can be donwloaded from [http://projects.gctronic.com/epuck2/e-puck2_main-processor_snapshot_16.02.18_13fa922.zip e-puck2_main-processor_snapshot_16.02.18.zip].<br/>
In order to automatically run the script at boot, the <code>/etc/rc.local</code> was modified by adding the call to the script just before the end of the file.


=Creating a project=
==Power button handling==
==Main microcontroller standard firmware project==
The power button press is handled by a background service (<code>systemd</code>) started automatically at boot. The service description file is located in <code>/etc/systemd/system/power_handling.service</code> and it calls the <code>/home/pi/power-handling/</code> program. Beware to not remove neither of these files.<br/>
If you want to modify the code of the standard firmware running on the main microcontroller, or if you want to have a look at the implementation details, then you can add this project in Eclipse by following the next steps:<br/>
The source code of the power button handling program is available in the Pi-puck repository and is located in <code>/home/pi/Pi-puck/power-handling/power-handling.c</code>.
# Run Eclipse and then select <code>File->New->Makefile Project with Existing Code</code>.
# Next click on the <code>Browse</code> button and choose the project folder of the git repository downloaded previously (should be named <code>e-puck2_main-processor</code>) and set a project name (otherwise you can keep the one created by Eclipse). Choose <code>None</code> for the the toolchain.
# Click on the <code>Finish</code> button and the project is added to Eclipse.
# Build the project by selecting one directory of the project from the left panel and then <code>Project->Build Project</code>.


==Project template==
==Desktop mode==
The main microcontroller standard firmware project can also be used as a library to build your own project on top of it.<br>
The system starts in console mode, to switch to desktop (LXDE) mode issue the command <code>startx</code>.
===Camera viewer===
A camera viewer called <code>luvcview</code> is installed in the system. You can open a terminal and issue simply the command <code>luvcview</code> to see the image coming from the robot camera.


To accomplish that, you have to copy the folder <code>Project_template</code>, contained in the <code>e-puck2_main-processor</code> project, and place it in the same directory of the <code>e-puck2_main-processor</code> project; you can of course rename the folder to the name you want (e.g. <code>myproject</code>). You must end up with the following directory tree:<br>
==VNC==
* e-puck2
[https://www.realvnc.com/en/ VNC] is a remote control desktop application that lets you connect to the Pi-puck from your computer and then you will see the desktop of the Pi-puck inside a window on your computer. You'll be able to control it as though you were working on the Pi-puck itself.<br/>
** e-puck2_main-processor
VNC is installed in the system and the ''VNC server'' is automatically started at boot, thus you can connect with ''VNC Viewer'' from your computer by knowing the IP address of the Pi-puck (refer to section [https://www.gctronic.com/doc/index.php?title=Pi-puck#How_to_know_your_IP_address How to know your IP address]).<br/>
** myproject
Notice that the ''VNC server'' is started also in console mode.


Then you can add this project in Eclipse by following the next steps:
==I2C communication==
# Run Eclipse and then select <code>File->New->Makefile Project with Existing Code</code>.
The communication between the Pi-puck extension and the robot is based on I2C. The system is configured to exploit the I2C hardware peripheral in order to save CPU usage, but if you need to use the software I2C you can enable it by modifying the <code>/boot/config.txt</code> file and removing the <code>#</code> symbol (comment) in front of the line with the text <code>dtparam=soft_i2c</code> (it is placed towards the end of the file).
# Next click on the <code>Browse</code> button and choose the project folder of your project (e.g. <code>myproject</code>) and set a project name (otherwise you can keep the one created by Eclipse). Choose <code>None</code> for the the toolchain.
# Click on the <code>Finish</code> button and the project is added to Eclipse.
# Select the project root folder and go to <code>Project->Properties->C/C++ General->Preprocessor Include Paths, Macros etc->Providers</code> and check <code>CDT Cross GCC Built-in Compiler Settings</code>.<br> Then in the textbox below, write <code>arm-none-eabi-gcc ${FLAGS} -E -P -v -dD "${INPUTS}"</code>.
# Create a linked folder inside your project that links to the <code>e-puck2_main-processor</code> library. This allows Eclipse to index the declarations and implementations of the functions and variables in the code of the library.
##Select the project root folder and go to <code>File->New->Folder</code>.
##Check <code>Advanced >></code> on the bottom.
##Choose <code>Link to alternate location (Linked Folder)</code>.
##Type <code>PROJECT_LOC/../e-puck2_main-processor</code> and click the <code>Finish</code> button.
# Build the project by selecting one file of the project from the left panel and then <code>Project->Build Project</code>. The result of the compilation will appear in the <code>build</code> folder in your project folder.
# After you compile the project, select the project root folder and go to <code>Project->C/C++ Index->Rebuild</code> to rebuild the index (we need to have compiled at least one time in order to let Eclipse find all the paths to the files used).


Now you can write your own program. If you want to add source files (<code>.c</code>) to the project you need to add them also in the <code>makefile</code>, in the <code>CSRC</code> definition. All the headers files (<code>.h</code>) located next to the <code>makefile</code> are automatically included in the compilation, but if you need to place them into folders, you have to specify these folders in the <code>makefile</code>, in the <code>INCDIR</code> definition. The same is needed for any desired <code>.h</code> files from other external folders.<br/>
==Audio output configuration==
In the <code>makefile</code> you can also set the name of your project.<br/>
You can enable or disable audio output by modifying the <code>config.txt</code> file in the <code>boot</code> partition.<br/>
This <code>makefile</code> uses the main makefile of the <code>e-puck2_main-processor</code> project. This means you can add custom commands to the <code>makefile</code> but it should not interfere with the main makefile.
To enable audio output insert the line: <code>gpio=22=op,dh</code><br/>
To disable audio output insert the line: <code>gpio=22=op,dl</code><br/>
If you don't need to play audio files it is suggested to disable audio output in order to save power.


=Configuring the Debugger's settings=
=ROS=
<code>Eclipse_e-puck2</code> contains everything needed to compile, program and debug the e-puck2.<br>
ROS Kinetic is integrated in the Pi-puck system.<br/>
The only settings to configure with a new project are located under the <code>Debug Configurations</code> tab of Eclipse (you can also find it on <code>Run->Debug Configurations</code>).  
A ROS node developed to run in the Pi-puck is available for both <code>CPP</code> and <code>Python</code>, the communication system is based on the third architecture shown in chapter [https://www.gctronic.com/doc/index.php?title=Pi-puck#Wireless_remote_control Wireless remote control]; a more detailed schema is shown below:<br/>
:<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/Debug_configuration.png <img width=231 src="http://projects.gctronic.com/epuck2/wiki_images/Debug_configuration.png">]</span><br/>
<span class="plainlinks">[https://projects.gctronic.com/epuck2/wiki_images/epuck2-ros-schema.png <img width=600 src="https://projects.gctronic.com/epuck2/wiki_images/epuck2-ros-schema.png">]</span>
Once in the settings, select <code>Generic Blackmagic Probe</code> preset on the left panel. Then you need to configure two things :


# In the <code>main</code> tab, select which project to debug and the path to the compiled file. If the project has already been compiled, Eclipse should have indexed the binaries and you can list the project and the compiled files using respectively the <code>Browse...</code> and <code>Search Project...</code> buttons.<br/> If there is nothing apering when you press <code>Search Project...</code> then you must enter the <code>.elf</code> file name by hand, which can be found in your project <code>build</code> folder (e.g. <code>build/e-puck2_main-processor.elf</code>).
==Initial configuration==
# In the <code>Startup</code> tab, you need to replace the serial port name written on the first line of the text box by the one used by the GDB Server of your robot. [http://www.gctronic.com/doc/index.php?title=e-puck2#Finding_the_USB_serial_ports_used See how to find it].
The ROS workspace is located in <code>~/rosbots_catkin_ws/</code><br/>
:* For Windows, it will be <code>\\.\COMX</code>, <code>X</code> being the port number.
The e-puck2 ROS driver is located in <code>~/rosbots_catkin_ws/src/epuck_driver_cpp/</code><br/>
:* For Linux, it will be <code>/dev/ttyACMX</code>, <code>X</code> being the port number
Remember to follow the steps in the section [http://www.gctronic.com/doc/index.php?title=Pi-puck#Requirements Requirements ] and section [https://www.gctronic.com/doc/index.php?title=Pi-puck#Demos_and_scripts_update Demos and scripts update], only once.<br/>
:* For Mac, it will be <code>/dev/cu.usbmodemXXXXX</code>, <code>XXXXX</code> being the port number.
The PC (if used) and the Pi-puck extension are supposed to be configured in the same network.
:* You can also type <code>${COM_PORT}</code> instead of the com port in order to use the variable <code>COM_PORT</code> for the debug configuration.<br>To change the value of this variable, go to the <code>main</code> tab again, click on the <code>Variables...</code> button and click on the <code>Edit Variables...</code> button. The opened window will let you edit the value of the variable.<br>Using the variable <code>COM_PORT</code> instead of the real com port in a debug configuration is useful if for example you have multiple debug configurations. If for some reason you need to change the serial port to use, then you can simply edit the variable <code>COM_PORT</code> instead of editing the serial port for each debug configuration.


If you want to debug another project, you can duplicate this settings and change the relevant parts (project name and path to compiled file) in order to have one launch configuration for each project.<br/>
==Running roscore==
:<span class="plain links">[http://projects.gctronic.com/epuck2/wiki_images/e-puck2-debug.jpg <img width=400 src="http://projects.gctronic.com/epuck2/wiki_images/e-puck2-debug-small.jpg">]</span><br/>
<code>roscore</code> can be launched either from the PC or directly from the Pi-puck.<br/>
Before starting roscore, open a terminal and issue the following commands:
* <code>export ROS_IP=roscore-ip</code>
* <code>export ROS_MASTER_URI=http://roscore-ip:11311</code>
where <code>roscore-ip</code> is the IP of the machine that runs <code>roscore</code><br/>
Then start <code>roscore</code> by issueing <code>roscore</code>.


Now you should be able to use the debugger with Eclipse.
==Running the ROS node==
Before starting the e-puck2 ROS node on the Pi-puck, issue the following commands:
* <code>export ROS_IP=pipuck-ip</code>
* <code>export ROS_MASTER_URI=http://roscore-ip:11311</code>
where <code>pipuck-ip</code> is the IP of the Pi-puck extension and <code>roscore-ip</code> is the IP of the machine that runs <code>roscore</code> (can be the same IP if <code>roscore</code> runs directly on the Pi-puck).


=Running a debugging session=
To start the e-puck2 ROS node issue the command:<br/>
In order to update the firmware of the main microcontroller (STM32F407) you can either use Eclipse (as explained in section [http://www.gctronic.com/doc/index.php?title=e-puck2#Configuring_the_Debugger.27s_settings Configuring the Debugger settings]) or you can do it manually as explained in this section.
<code>roslaunch epuck_driver_cpp epuck_minimal.launch debug_en:=true ros_rate:=20</code><br/>
<!--
To start the e-puck2 ROS node issue the command:<br/>
<code>roslaunch epuck_driver_cpp epuck_controller.launch epuck_id:='3000'</code><br/>
This launch file will start the e-puck2 node and the camera node.
If you are using a PC, then you can start <code>rviz</code>:
* in a terminal issue the command <code>rviz rviz</code>
* open the configuration file named <code>single_epuck_driver_rviz.rviz</code> you can find in <code>epuck_driver_cpp/config/</code> directory
-->


View automatically change => image => how to come back to C/C++ view
The following graph shows all the topics published by the e-puck2 driver node:<br/>
<span class="plainlinks">[https://projects.gctronic.com/epuck2/wiki_images/ros-e-puck2_.jpg <img width=150 src="https://projects.gctronic.com/epuck2/wiki_images/ros-e-puck2_small.jpg">]</span>
''<font size="2">Click to enlarge</font>''


Registers view => image
==Test the communication==
You can test if the communication between the robot and the computer is actually working by simply display messages published by a topic, e.g.:
<code>rostopic echo /proximity0</code>
You can have the list of all the topic by issueing the command: <code>rostopic list</code>.


Breakpoint, restart, ...
==Get the source code==
The last version of the e-puck2 ROS node can be downloaded from the git: <code>git clone -b pi-puck https://github.com/gctronic/epuck_driver_cpp.git</code><br/>
 
To update to the last version follow these steps:
# <code>cd ~/rosbots_catkin_ws/src/</code>
# <code>rm -R -f epuck_driver_cpp</code>
# <code>git clone -b pi-puck https://github.com/gctronic/epuck_driver_cpp.git</code>
# <code>cd ~/rosbots_catkin_ws/</code>
# <code>catkin_make --only-pkg-with-deps epuck_driver_cpp</code>
 
==Python version==
A Python version developed by the York University can be found here [https://github.com/yorkrobotlab/pi-puck-ros https://github.com/yorkrobotlab/pi-puck-ros].
 
=OpenCV=
OpenCV 3.4.1 is integrated in the Pi-puck system.
 
=York Robotics Lab Expansion Board=
The York Robotics Lab developed an expansion board for the Pi-puck extension that includes: 9-DoF IMU, 5-input navigation switch, RGB LED, XBee socket, 24-pin Raspberry Pi compatible header. For more information have a look at [https://pi-puck.readthedocs.io/en/latest/extensions/yrl-expansion/ https://pi-puck.readthedocs.io/en/latest/extensions/yrl-expansion/].<br/>
<span class="plainlinks">[https://projects.gctronic.com/epuck2/wiki_images/yrl-expansion-top.jpg <img width=350 src="https://projects.gctronic.com/epuck2/wiki_images/yrl-expansion-top.jpg">]</span><br/>
 
An example showing how to communicate with the YRL expansion board is available in the Pi-puck repository of the York Robotics Lab:
# <code> git clone https://github.com/yorkrobotlab/pi-puck.git pi-puck_yrl</code>
# <code>cd pi-puck_yrl/python-library</code>
# <code>python3 pipuck-library-test.py -x</code> Once started, press in sequence up, down, left, right, center to continue the demo.
 
==Assembly==
The assembly is very simple: place the YRL expansion board on top of the Raspberry Pi and then connect them with the provided screws. Once they are connected, you can attach both on top of the Pi-puck extension.<br/>
<span class="plainlinks">[https://projects.gctronic.com/epuck2/wiki_images/yrl-exp1.jpg <img width=200 src="https://projects.gctronic.com/epuck2/wiki_images/yrl-exp1.jpg">]</span>
<span class="plainlinks">[https://projects.gctronic.com/epuck2/wiki_images/yrl-exp2.jpg <img width=150 src="https://projects.gctronic.com/epuck2/wiki_images/yrl-exp2.jpg">]</span>
<span class="plainlinks">[https://projects.gctronic.com/epuck2/wiki_images/yrl-exp3.jpg <img width=200 src="https://projects.gctronic.com/epuck2/wiki_images/yrl-exp3.jpg">]</span><br/>
==XBee==
In this section it is explained how to send data from the Pi-puck to the computer using XBee modules Series 1.
 
The XBee module mounted on the YRL expansion must be programmed with the <code>XBEE 802.15.4-USB ADAPTER</code> firmware; this can be done with the [http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/xctu XTCU software]. With XTCU be sure to program also the same parameters on both modules in order to be able to communicate between each other: <code>Channel</code> (e.g. <code>C</code>), <code>PAN ID</code> (e.g. <code>3332</code>), <code>DH = 0</code>, <code>DL = 0</code>, <code>MY = 0</code>.
 
Some Python examples ara available in the [https://github.com/yorkrobotlab/pi-puck-expansion-board YRL Expansion Board GitHub repository] that can be used to communicate with the XBee module mounted on the YRL expansion. These examples are based on the [https://github.com/digidotcom/xbee-python Digi XBee Python library] that can be installed with the command <code>pip3 install digi-xbee</code>. This library requires the XBee module to be configured in API mode; you can setup this mode following these steps:
# <code> git clone https://github.com/yorkrobotlab/pi-puck-expansion-board.git</code>
# <code>cd pi-puck-expansion-board/xbee</code>
# <code>python3 xbee-enable-api-mode.py</code>
 
Now connect the second module to the computer and run XTCU, select the console view and open the serial connection. Then run the [https://projects.gctronic.com/epuck2/PiPuck/xbee-send-broadcast.py xbee-send-broadcast.py] example from the Pi-puck by issuing the command: <code>python3 xbee-send-broadcast.py</code>. From the XTCU console you should receive <code>Hello Xbee World!</code>.
 
For more information refer to [https://pi-puck.readthedocs.io/en/latest/extensions/yrl-expansion/xbee/ https://pi-puck.readthedocs.io/en/latest/extensions/yrl-expansion/xbee/].
 
=Time-of-Flight Distance Sensor add-on=
The Pi-puck extension integrates six sensor board sockets that can be used to add up to six VL53L1X-based distance sensor add-ons. The Pi-puck equipped with these add-ons is shown in the following figure:<br/>
<span class="plainlinks">[https://projects.gctronic.com/epuck2/wiki_images/pi-puck-tof.jpg <img width=250 src="https://projects.gctronic.com/epuck2/wiki_images/pi-puck-tof.jpg">]</span><br/>
For more information have a look at [https://pi-puck.readthedocs.io/en/latest/extensions/tof-sensor/#time-of-flight-distance-sensor https://pi-puck.readthedocs.io/en/latest/extensions/tof-sensor/#time-of-flight-distance-sensor].
 
<font style="color:red"> Beware that once the socket for the ToF add-on sensor '''3''' is soldered on the pi-puck extension, you are no more able to connect the HDMI cable.</font>
 
==Communicate with the ToF sensors==
In order to communicate with the sensors you can use the <code>multiple-i2c-bus-support</code> branch of the [https://github.com/pimoroni/vl53l1x-python vl53l1x-python] library from [https://shop.pimoroni.com/ Pimoroni]. To install this library follow these steps:
# <code>git clone -b multiple-i2c-bus-support https://github.com/pimoroni/vl53l1x-python.git</code>
# <code>cd vl53l1x-python</code>
# <code>sudo python3 setup.py install</code>
 
A Python example showing how to read data from the ToF sensors is available in the Pi-puck repository of the York Robotics Lab:
# <code> git clone https://github.com/yorkrobotlab/pi-puck.git pi-puck_yrl</code>
# <code>cd pi-puck_yrl/python-library</code>
# <code>python3 pipuck-library-test.py -t</code>

Revision as of 09:44, 24 May 2022

Hardware

Overview


Features:

  • Raspberry Pi zero W (rPi) connected to the robot via I2C
  • interface between the robot base camera and the rPi via USB, up to 15 FPS
  • 1 digital microphone and 1 speaker
  • USB hub connected to the rPi with 2 free ports
  • uUSB cable to the rPi uart port. Also ok for charging
  • 2 chargers. 1 for the robot battery and 1 for the auxiliary battery on top of the extension
  • charging contact points in front for automatic charging. External docking station available
  • several extension options. 6 i2C channels, 2 ADC inputs
  • several LED to show the status of the rPi and the power/chargers

I2C bus

I2C is used to let communicate various elements present in the robot, Pi-puck and extensions. An overall schema is shown in the following figure:

An I2C switcher is included in the Pi-puck extension in order to support additional I2C buses (the RPi alone has only one usable I2C bus). These are needed to avoid conflicts between Time-of-Flight sensors that have a fixed I2C address.

Getting started

This introductory section explains the minimal procedures needed to work with the Raspberry Pi Zero W mounted on the Pi-puck extension board and gives a general overview of the available basic demos and scripts shipped with the system flashed on the micro SD. More advanced demos are described in the following separate sections (e.g. ROS), but the steps documented here are fundamental, so be sure to fully understand them.

The extension is mostly an interface between the e-puck robot and the Raspberry Pi, so you can exploit the computational power of a Linux machine to extend the robot capabilities.

In most cases, the Pi-puck extension will be attached to the robot, but it's interesting to note that it can be used also alone when the interaction with the robot isn't required.
The following sections assume the full configuration (robot + extension), unless otherwise stated.

Requirements

The robot must be programmed with a special firmware in order to communicate via I2C bus with the Raspberry Pi mounted on the Pi-puck extension. The same I2C bus is shared by all the devices (camera, IMU, distance sensor, others extensions), the main microcontroller and the Raspberry Pi. Since the Raspberry Pi acts as I2C master, these devices will not be anymore reachable directly from the robot main microcontroller that will act instead as I2C slave.

e-puck1

The e-puck1 robot must be programmed with the following firmware pi-puck-e-puck1.hex.

e-puck2

The e-puck2 robot must be programmed with the following firmware e-puck2_main-processor_extension.elf (07.06.19) and the selector must be placed in position 10.
The source code is available in the gumstix branch of the repo https://github.com/e-puck2/e-puck2_main-processor.

Turn on/off the extension

To turn on the extension you need to press the auxON button as shown in the follwoing figure; this will turn on also the robot (if not already turned on). Similarly, if you turn on the robot then also the extension will turn on automatically.

To turn off the Pi-puck you need to press and hold the auxON button for 2 seconds; this will initiate the power down procedure.

Beware that by turning off the robot, the extension will not be turned off automatically if it is powered from another source like the micro usb cable or a secondary battery. You need to use its power off button to switch it off. Instead if there is no other power source, then by turning off the robot also the extension will be turned off (not cleanly).

Console mode

The Pi-puck extension board comes with a pre-configured system ready to run without any additional configuration.
In order to access the system from a PC in console mode, the following steps must be performed:
1. connect a micro USB cable from the PC to the extension module. If needed, the drivers are available in the following link USB to UART bridge drivers

2. execute a terminal program and configure the connection with 115200-8N1 (no flow control). The serial device is the one created when the extension is connected to the computer
3. switch on the robot (the extension will turn on automatically); now the terminal should display the Raspberry Pi booting information. If the robot isn't present, then you can directly power on the extension board with the related button
4. login with user = pi, password = raspberry

Battery charge

You can either charge the robot battery or the additional battery connected to the Pi-puck extension or both the batteries by simply plugging the micro USB cable.
The following figure shows the connector for the additional battery.

The robot can also autonomously charge itself if the charging wall is available. The Pi-puck extension includes two spring contacts on the front side that let the robot easily make contact with the charging wall and charge itself. The charging wall and the spring contacts are shown in the following figures:

Reset button

A button is available to reset the robot, when pressed it will resets only the robot restarting its firmware. This is useful for instance during development or for specific demos in which a restart of the robot is needed. In these cases you don't need to turn off completely the robot (and consequently also the Pi-puck if energy is supplied by the robot) but instead you can simply reset the robot. The position of the reset button is shown in the following figure:

How to communicate with the robot and its sensors

Communicate with the e-puck1

Refer to the repo https://github.com/yorkrobotlab/pi-puck-e-puck1.

Communicate with the e-puck2

An example showing how to exchange data between the robot and the Pi-puck extension is available in the Pi-puck repository; you can find it in the directory /home/pi/Pi-puck/e-puck2/.
You can build the program with the command gcc e-puck2_test.c -o e-puck2_test.
Now you can run the program by issueing ./e-puck2_test; this demo will print the sensors data on the terminal and send some commands to the robot at 2 Hz.
The same example is also available in Python, you can run it by issueing python3 e-puck2_test.py.

Packet format

Extension to robot packet format, 20 bytes payload (the number in the parenthesis represents the bytes for each field):

Left speed (2) Right speed (2) Speaker (1) LED1, LED3, LED5, LED7 (1) LED2 RGB (3) LED4 RGB (3) LED6 RGB (3) LED8 RGB (3) Settings (1) Checksum (1)
  • Left, right speed: [-2000 ... 2000]
  • Speaker: sound id = [0, 1, 2]
  • LEDs on/off flag: bit0 for LED1, bit1 for LED3, bit2 for LED5, bit3 for LED7
  • RGB LEDs: [0 (off) ... 100 (max)]
  • Settings:
    • bit0: 1=calibrate IR proximity sensors
    • bit1: 0=disable onboard obstacle avoidance; 1=enable onboard obstacle avoidance (not implemented yet)
    • bit2: 0=set motors speed; 1=set motors steps (position)
  • Checksum: Longitudinal Redundancy Check (XOR of the bytes 0..18)

Robot to extension packet format, 47 bytes payload (the number in the parenthesis represents the bytes for each field):

8 x Prox (16) 8 x Ambient (16) 4 x Mic (8) Selector + button (1) Left steps (2) Right steps (2) TV remote (1) Checksum
  • Selector + button: selector values represented by 4 least significant bits (bit0, bit1, bit2, bit3); button state is in bit4 (1=pressed, 0=not pressed)
  • Checksum: Longitudinal Redundancy Check (XOR of the bytes 0..45)

Communicate with the IMU

e-puck1

An example written in C showing how to read data from the IMU (LSM330) mounted on e-puck 1.3 is available in the Pi-puck repository; you can find it in the directory /home/pi/Pi-puck/e-puck1/.
You can build the program with the command gcc e-puck1_imu.c -o e-puck1_imu.
Now you can run the program by issueing ./e-puck1_imu and then choose whether to get data from the accelerometer or gyroscope; this demo will print the sensors data on the terminal.

e-puck2

An example showing how to read data from the IMU (MPU-9250) is available in the Pi-puck repository; you can find it in the directory /home/pi/Pi-puck/e-puck2/.
You can build the program with the command gcc e-puck2_imu.c -o e-puck2_imu.
Now you can run the program by issueing ./e-puck2_imu and then choose whether to get data from the accelerometer or gyroscope; this demo will print the sensors data on the terminal.
The same example is also available in Python, you can run it by issueing python3 e-puck2_imu.py.

Communicate with the ToF sensor

The Time of Flight sensor is available only on the e-puck2 robot.

First of all you need to verify that the VL53L0X Python package is installed with the following command: python3 -c "import VL53L0X". If the command returns nothing you're ready to go, otherwise if you receive an ImportError then you need to install the package with the command: pip3 install git+https://github.com/gctronic/VL53L0X_rasp_python.

A Python example showing how to read data from the ToF sensor is available in the Pi-puck repository; you can find it in the directory /home/pi/Pi-puck/e-puck2/.
You can run the example by issueing python3 VL53L0X_example.py (this is the example that you can find in the repository https://github.com/gctronic/VL53L0X_rasp_python/tree/master/python).

Capture an image

The robot camera is connected to the Pi-puck extension as a USB camera, so you can access it very easily.
An example showing how to capture an image from the robot's camera using OpenCV is available in the Pi-puck repository; you can find it in the directory /home/pi/Pi-puck/snapshot/.
You can build the program with the command g++ $(pkg-config --libs --cflags opencv) -ljpeg -o snapshot snapshot.cpp.
Now you can run the program by issueing ./snapshot; this will save a VGA image (JPEG) named image01.jpg to disk.
The program can accept the following parameters:
-d DEVICE_ID to specify the input video device from which to capture an image, by default is 0 (/dev/video0). This is useful when working also with the Omnivision V3 extension that crates another video device; in this case you need to specify -d 1 to capture from the robot camera.
-n NUM to specify how many images to capture (1-99), by default is 1
-v to enable verbose mode (print some debug information)
Beware that in this demo the acquisition rate is fixed to 5 Hz, but the camera supports up to 15 FPS.
The same example is also available in Python, you can run it by issueing python snapshot.py.

Communicate with the ground sensors extension

Both e-puck1 and e-puck2 support the ground sensors extension.
This extension is attached to the I2C bus and can be read directly from the Pi-puck.
An example written in C showing how to read data from the ground sensors extension is available in the Pi-puck repository; you can find it in the directory /home/pi/Pi-puck/ground-sensor/.
You can build the program with the command gcc groundsensor.c -o groundsensor.
Now you can run the program by issueing ./groundsensor; this demo will print the sensors data on the terminal.
The same example is also available in Python, you can run it by issueing python3 groundsensor.py.

Communicate with the range and bearing extension

Both e-puck1 and e-puck2 support the range and bearing extension.
This extension is attached to the I2C bus and can be read directly from the Pi-puck.
An example written in C showing how to start playing with the range and bearing extension is available in the Pi-puck repository; you can find it in the directory /home/pi/Pi-puck/randb/. You need two boards: one is the transmitter (run randb_tx) and the other is the receiver (run randb_rx). The receiver will print the data received from the transmitter.
You can build the programs with the command gcc randb_tx.c -o randb_tx and gcc randb_rx.c -o randb_rx.
The same example is also available in Python, you can run it by issueing python3 randb_tx.py and python3 randb_rx.py.

Wireless remote control

If you want to control the robot from a computer, for instance when you have an algorithm that requires heavy processing not suitable for the Pi-puck or when the computer acts as a master controlling a fleet of robots that return some information to the controller, then you have 3 options:
1) The computer establishes a WiFi connection with the Pi-puck to receive data processed by the Pi-puck (e.g. results of an image processing task); at the same time the computer establishes a Bluetooth connection directly with the e-puck2 robot to control it.

Disadvantages:
- the Bluetooth standard only allow up to seven simultaneous connections
- doubled latency (Pi-puck <-> pc and pc <-> robot)

2) The computer establishes a WiFi connection with both the Pi-puck and the e-puck2 robot.

Advantages:
- only one connection type needed, easier to handle
Disadvantages:
- doubled latency (Pi-puck <-> pc and pc <-> robot)

3) The computer establishes a WiFi connection with the Pi-puck and then the Pi-puck is in charge of controlling the robot via I2C based on the data received from the computer controller.

Advantages:
- less latency involved
- less number of connections to handle
- depending on your algorithm, it would be possible to initially develop the controller on the computer (easier to develop and debug) and then transfer the controller directly to the Pi-puck without the need to change anything related to the control of the robot via I2C

The following figure summarizes these 3 options:

How to work with the Pi-puck

Demos and scripts update

First of all you should update to the last version of the demos and scripts released with the system that you can use to start playing with the Pi-puck extension and the robot.
To update the repository follow these steps:
1. go to the directory /home/pi/Pi-puck
2. issue the command git pull
Then to update some configurations of the system:
1. go to the directory /home/pi/Pi-puck/system
2. issue the command ./update.sh; the system will reboot.
You can find the Pi-puck repository here https://github.com/gctronic/Pi-puck.

Audio recording

Use the arecord utility to record audio from the onboard microphone. The following example shows how to record an audio of 2 seconds (-d parameter) and save it to a wav file (test.wav):
arecord -Dmic_mono -c1 -r16000 -fS32_LE -twav -d2 test.wav
You can also specify a rate of 48 KHz with -r48000

Audio play

Use aplay to play wav files and mplayer to play mp3 files.

Battery reading

An example showing how to measure both the battery of the robot and the battery of the Pi-puck extension is available in the Pi-puck repository; you can find it in the directory /home/pi/Pi-puck/battery/.
The first time you need to change the mode of the script in order to be executable with the command sudo chmod +x read-battery.sh.
Then you can start reading the batteries value by issueing ./read-battery.sh.; this demo will print the batteries values (given in Volts) on the terminal.

WiFi configuration

Specify your network configuration in the file /etc/wpa_supplicant/wpa_supplicant-wlan0.conf.
Example:

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1
country=CH
network={
        ssid="MySSID"
        psk="9h74as3xWfjd"
}

You can have more than one network parameter to support more networks. For more information about wpa_supplicant refer to https://hostap.epitest.fi/wpa_supplicant/.

Once the configuration is done, you can also connect to the Pi-puck with SSH. If you are working in Windows you can use PuTTY.

How to know your IP address

A simple method to know your IP address is to connect the USB cable to the Pi-puck extension and issue the command ip a; from the command's result you will be able to get you current assigned IP address.

If you prefer to know your IP address remotely (without connecting any cable) then you can use nmap.
For example you can search all connected devices in your network with the following command: nmap 192.168.1.*. Beware that you need to specify the subnet based on your network configuration.
From the command's result you need to look for the hostname raspberrypi.
If you are working in Windows you can use the Zenmap application.

File transfer

USB cable

You can transfer files via USB cable between the computer and the Pi-puck extension by using on of the zmodem protocol.
The lrzsz package is pre-installed in the system, thus you can use the sx and rx utilities to respectevely send files to the computer and receive files from the computer.
Example of sending a file to the computer using the Minicom terminal program:
1. in the Pi-puck console type sx --zmodem fliename.ext. The transfer should start automatically and you'll find the file in the home directory.
Example of receiving a file from the computer using the Minicom terminal program:
1. in the Pi-puck console type rx -Z
2. to start the transfer type the sequence CTRL+A+S, then chose zmodem and select the file you want to send with the spacebar. Finally press enter to start the transfer.

WiFi

The Pi-puck extension supports SSH connections.
To exchange files between the Pi-puck and the computer, the scp tool (secure copy) can be used. An example of transferring a file from the Pi-puck to the computer is the following:
scp pi@192.168.1.20:/home/pi/example.txt example.txt

If you are working in Windows you can use PuTTY.

Image streaming

Bluetooth LE

An example of a BLE uart service is available in the Pi-puck repository; you can find it in the directory /home/pi/Pi-puck/ble/.
To start the service you need to type: python uart_peripheral.py.
Then you can use the e-puck2-android-ble app you can find in chapter Connecting to the BLE in order to connect to the Pi-puck extension via BLE. Once connected you'll receive some dummy data for the proximity values and by clicking on the motion buttons you'll see the related action printed on the Pi-puck side. This is a starting point that you can extend based on your needs.

Operating system

The system is based on Raspbian Stretch and can be downloaded from the following link pi-puck-os_16.12.19.zip.

When booting the first time, the first thing to do is expanding the file system in order to use all the available space on the micro sd:
1. sudo raspi-config
2. Select Advanced Options and then Expand Filesystem
3. reboot

e-puck2 camera configuration

The e-puck2 camera need to be configured through I2C before it can be used. For this reason a Python script is called at boot that detects and configures the camera. The script resides in the Pi-puck repository installed in the system (/home/pi/Pi-puck/camera-configuration.py), so beware to not remove it.

If the robot is plugged after the boot process is completed, you need to call manually the Python configuration script before using the camera by issueing the command python3 /home/pi/Pi-puck/camera-configuration.py.

In order to automatically run the script at boot, the /etc/rc.local was modified by adding the call to the script just before the end of the file.

Power button handling

The power button press is handled by a background service (systemd) started automatically at boot. The service description file is located in /etc/systemd/system/power_handling.service and it calls the /home/pi/power-handling/ program. Beware to not remove neither of these files.
The source code of the power button handling program is available in the Pi-puck repository and is located in /home/pi/Pi-puck/power-handling/power-handling.c.

Desktop mode

The system starts in console mode, to switch to desktop (LXDE) mode issue the command startx.

Camera viewer

A camera viewer called luvcview is installed in the system. You can open a terminal and issue simply the command luvcview to see the image coming from the robot camera.

VNC

VNC is a remote control desktop application that lets you connect to the Pi-puck from your computer and then you will see the desktop of the Pi-puck inside a window on your computer. You'll be able to control it as though you were working on the Pi-puck itself.
VNC is installed in the system and the VNC server is automatically started at boot, thus you can connect with VNC Viewer from your computer by knowing the IP address of the Pi-puck (refer to section How to know your IP address).
Notice that the VNC server is started also in console mode.

I2C communication

The communication between the Pi-puck extension and the robot is based on I2C. The system is configured to exploit the I2C hardware peripheral in order to save CPU usage, but if you need to use the software I2C you can enable it by modifying the /boot/config.txt file and removing the # symbol (comment) in front of the line with the text dtparam=soft_i2c (it is placed towards the end of the file).

Audio output configuration

You can enable or disable audio output by modifying the config.txt file in the boot partition.
To enable audio output insert the line: gpio=22=op,dh
To disable audio output insert the line: gpio=22=op,dl
If you don't need to play audio files it is suggested to disable audio output in order to save power.

ROS

ROS Kinetic is integrated in the Pi-puck system.
A ROS node developed to run in the Pi-puck is available for both CPP and Python, the communication system is based on the third architecture shown in chapter Wireless remote control; a more detailed schema is shown below:

Initial configuration

The ROS workspace is located in ~/rosbots_catkin_ws/
The e-puck2 ROS driver is located in ~/rosbots_catkin_ws/src/epuck_driver_cpp/
Remember to follow the steps in the section Requirements and section Demos and scripts update, only once.
The PC (if used) and the Pi-puck extension are supposed to be configured in the same network.

Running roscore

roscore can be launched either from the PC or directly from the Pi-puck.
Before starting roscore, open a terminal and issue the following commands:

where roscore-ip is the IP of the machine that runs roscore
Then start roscore by issueing roscore.

Running the ROS node

Before starting the e-puck2 ROS node on the Pi-puck, issue the following commands:

where pipuck-ip is the IP of the Pi-puck extension and roscore-ip is the IP of the machine that runs roscore (can be the same IP if roscore runs directly on the Pi-puck).

To start the e-puck2 ROS node issue the command:
roslaunch epuck_driver_cpp epuck_minimal.launch debug_en:=true ros_rate:=20

The following graph shows all the topics published by the e-puck2 driver node:
Click to enlarge

Test the communication

You can test if the communication between the robot and the computer is actually working by simply display messages published by a topic, e.g.: rostopic echo /proximity0 You can have the list of all the topic by issueing the command: rostopic list.

Get the source code

The last version of the e-puck2 ROS node can be downloaded from the git: git clone -b pi-puck https://github.com/gctronic/epuck_driver_cpp.git

To update to the last version follow these steps:

  1. cd ~/rosbots_catkin_ws/src/
  2. rm -R -f epuck_driver_cpp
  3. git clone -b pi-puck https://github.com/gctronic/epuck_driver_cpp.git
  4. cd ~/rosbots_catkin_ws/
  5. catkin_make --only-pkg-with-deps epuck_driver_cpp

Python version

A Python version developed by the York University can be found here https://github.com/yorkrobotlab/pi-puck-ros.

OpenCV

OpenCV 3.4.1 is integrated in the Pi-puck system.

York Robotics Lab Expansion Board

The York Robotics Lab developed an expansion board for the Pi-puck extension that includes: 9-DoF IMU, 5-input navigation switch, RGB LED, XBee socket, 24-pin Raspberry Pi compatible header. For more information have a look at https://pi-puck.readthedocs.io/en/latest/extensions/yrl-expansion/.

An example showing how to communicate with the YRL expansion board is available in the Pi-puck repository of the York Robotics Lab:

  1. git clone https://github.com/yorkrobotlab/pi-puck.git pi-puck_yrl
  2. cd pi-puck_yrl/python-library
  3. python3 pipuck-library-test.py -x Once started, press in sequence up, down, left, right, center to continue the demo.

Assembly

The assembly is very simple: place the YRL expansion board on top of the Raspberry Pi and then connect them with the provided screws. Once they are connected, you can attach both on top of the Pi-puck extension.

XBee

In this section it is explained how to send data from the Pi-puck to the computer using XBee modules Series 1.

The XBee module mounted on the YRL expansion must be programmed with the XBEE 802.15.4-USB ADAPTER firmware; this can be done with the XTCU software. With XTCU be sure to program also the same parameters on both modules in order to be able to communicate between each other: Channel (e.g. C), PAN ID (e.g. 3332), DH = 0, DL = 0, MY = 0.

Some Python examples ara available in the YRL Expansion Board GitHub repository that can be used to communicate with the XBee module mounted on the YRL expansion. These examples are based on the Digi XBee Python library that can be installed with the command pip3 install digi-xbee. This library requires the XBee module to be configured in API mode; you can setup this mode following these steps:

  1. git clone https://github.com/yorkrobotlab/pi-puck-expansion-board.git
  2. cd pi-puck-expansion-board/xbee
  3. python3 xbee-enable-api-mode.py

Now connect the second module to the computer and run XTCU, select the console view and open the serial connection. Then run the xbee-send-broadcast.py example from the Pi-puck by issuing the command: python3 xbee-send-broadcast.py. From the XTCU console you should receive Hello Xbee World!.

For more information refer to https://pi-puck.readthedocs.io/en/latest/extensions/yrl-expansion/xbee/.

Time-of-Flight Distance Sensor add-on

The Pi-puck extension integrates six sensor board sockets that can be used to add up to six VL53L1X-based distance sensor add-ons. The Pi-puck equipped with these add-ons is shown in the following figure:

For more information have a look at https://pi-puck.readthedocs.io/en/latest/extensions/tof-sensor/#time-of-flight-distance-sensor.

Beware that once the socket for the ToF add-on sensor 3 is soldered on the pi-puck extension, you are no more able to connect the HDMI cable.

Communicate with the ToF sensors

In order to communicate with the sensors you can use the multiple-i2c-bus-support branch of the vl53l1x-python library from Pimoroni. To install this library follow these steps:

  1. git clone -b multiple-i2c-bus-support https://github.com/pimoroni/vl53l1x-python.git
  2. cd vl53l1x-python
  3. sudo python3 setup.py install

A Python example showing how to read data from the ToF sensors is available in the Pi-puck repository of the York Robotics Lab:

  1. git clone https://github.com/yorkrobotlab/pi-puck.git pi-puck_yrl
  2. cd pi-puck_yrl/python-library
  3. python3 pipuck-library-test.py -t